1. Cho a,b,c là các số thực dương thỏa a+b+c=3. Cmr \(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge1\)
2. Cho a,b,c là các số thực dương thỏa \(a^2+b^2+c^2=1\). Cmr: \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{4}\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
3.Cho a,b,c là các số thực dương thỏa \(a^2+b^2+c^2=3\). Cmr:\(\sqrt{\dfrac{a^2}{b+b^2+c}}+\sqrt{\dfrac{b^2}{c+c^2+a}}+\sqrt{\dfrac{c^2}{a+a^2+b}}\le3\)