x/y=7/20:y/z=5/8 va 2x+5y-2z=100
x/y=7/20; y/z=5/8 va 2x+5y-2z=100
Ta có: \(\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}=\frac{2x+5y-2z}{14+100-64}=\frac{100}{50}=2\)
\(\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{20}=2\Rightarrow y=40;\frac{z}{32}=2\Rightarrow z=64\)
Tick nha Doan Hai My!
Tìm x,y,z biết:
x/y=7/20;y/z=5/8 và 2x-5y+2z=100
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)
nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)
nên \(\dfrac{y}{5}=\dfrac{z}{8}\)
hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
mà 2x-5y+2z=100
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)
Lại có: \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\) \(\left(2\right)\)
Kết hợp ( 1 ) và ( 2 ) ta có: \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)
⇒ \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)
⇒ \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)
⇒ \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)
fvklfksokodzsưkfposkfposzokokozspkfposfkkkfff;oeajfirepjfirjiod
x/y = 7/20 ; y/z = 5/8 và 2x + 5y -2z =100
\(\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\)
\(\frac{x}{35}=\frac{y}{100};\frac{y}{100}=\frac{z}{160}\Leftrightarrow\)\(\frac{x}{35}=\frac{y}{100}=\frac{z}{160}\Leftrightarrow\frac{2x+5y-2z}{70+500-320}=\frac{100}{250}=0,4\)
\(\Rightarrow x=0,4.35=14\)
\(y=0,4.100=40\)
\(z=0,4.160=64\)
\(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{z}{y}=\dfrac{5}{8}\) và 2x- 2z+ 5y = 100
\(\dfrac{x}{y}=\dfrac{7}{20}\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{20};\dfrac{z}{y}=\dfrac{5}{8}\Leftrightarrow\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{14}=\dfrac{y}{40}=\dfrac{z}{25}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{14}=\dfrac{y}{40}=\dfrac{z}{25}=\dfrac{2x+5y-2z}{14\cdot2+40\cdot5-2\cdot25}=\dfrac{100}{178}=\dfrac{50}{89}\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{700}{89}\\y=\dfrac{2000}{89}\\z=\dfrac{1250}{89}\end{matrix}\right.\)
x/y = 7/20 ; y/z = 5/8 và 2x + 5y+ 2z= 100
Tìm x, y, z biết:
x/y=7/20; y/z=5/8 và 2x+5y-2z=100
\(\frac{x}{y}=\frac{7}{20}\Rightarrow x=\frac{7}{20}y\)
\(\frac{y}{z}=\frac{5}{8}\Rightarrow z=\frac{8}{5}y\)
\(2x+5y-2z=\frac{2.7}{20}y+5y-\frac{2.8}{5}y=\frac{5}{2}y=100\Leftrightarrow y=40\)
\(\Rightarrow x=\frac{7}{20}.40=14,z=\frac{8}{5}.40=64\).
a) x phần y = 9 phần 7 ; y phần 7 = 7 phần 3 và x-y+z = -15
b) x phần y = 7 phần 20 ; y phần z = 5 phần 8 và 2x + 5y - 2z = 100
Câu a) sai đề nhé bạn.
b) Ta có:
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\) và \(2x+5y-2z=100\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(2x+5y-2z=100\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x+5y-2z}{2.7+5.20-2.32}=\frac{100}{50}=2\)
\(\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=2.7=14\\\frac{y}{20}=2\Rightarrow y=2.20=40\\\frac{z}{32}=2\Rightarrow z=2.32=64\end{cases}}\)
Vậy \(x=14;y=40;z=64\)
Tìm x,y,z biết
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\Leftrightarrow\frac{x}{14}=\frac{y}{40}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{40}=\frac{z}{64}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=\frac{2x+5y-2z}{2.14+5.40-2.64}=\frac{100}{100}=1\)
\(\Leftrightarrow x=14\)
\(y=40\)
\(z=64\)
\(\frac{x}{y}=\frac{7}{20}=>\frac{x}{14}=\frac{y}{40}\)(1)
\(\frac{y}{z}=\frac{5}{8}=>\frac{y}{40}=\frac{z}{64}\)(2)
Từ (1) và (2) \(=>\frac{x}{14}=\frac{y}{40}=\frac{z}{64}\)
Áp dụng t/c của dãy tỉ số bằng nhau
\(\frac{x}{14}=\frac{y}{40}=\frac{z}{64}=\frac{2x+5y-2z}{28+200-128}=\frac{100}{100}=1\)
\(=>\hept{\begin{cases}\frac{x}{14}=1=>x=14\\\frac{y}{40}=1=>y=40\\\frac{z}{64}=1=>z=64\end{cases}}\)
Vậy ...
Tìm x,y,z biết: \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\) và 2x+5y-2z=100
\(\frac{x}{y}=\frac{7}{20}\Rightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Rightarrow\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{y}{20}=\frac{z}{32}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x+5y-2z}{14+100-64}=\frac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{7}=2\\\frac{y}{20}=2\\\frac{z}{32}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot7=14\\y=2\cdot20=40\\z=2\cdot32=64\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(14;40;64\right)\)