Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toán 8
Xem chi tiết
Phạm Tuấn Đạt
7 tháng 8 2018 lúc 20:35

\(1;a,A=x^2+20x+101\)

\(A=x^2+2.10x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -10

Vậy Min A = 1 <=> x = -10

Nguyen Thai Linh Anh
Xem chi tiết
an
Xem chi tiết
Trí Tiên亗
5 tháng 2 2020 lúc 11:12

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

Khách vãng lai đã xóa
Nguyễn Phương Uyên
5 tháng 2 2020 lúc 11:14

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

Khách vãng lai đã xóa
Trí Tiên亗
5 tháng 2 2020 lúc 11:16

Mình làm nốt mấy bài GTNN :

c) Ta có : \(\left|5-x\right|\ge0\forall x\) \(\Rightarrow\left|5-x\right|+2015\ge2015\forall x\)

hay \(A\ge2015\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|5-x\right|=0\Leftrightarrow x=5\)

Vậy : min \(A=2015\) tại \(x=5\)

Bài 2 : 

a) \(\left|x-5\right|\ge0\forall x\Rightarrow\left|x-5\right|+2012\ge2012\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=5\)

b) \(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|+2013\ge2013\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

Khách vãng lai đã xóa
Ngô Tiến Phát
Xem chi tiết
ILoveMath
16 tháng 1 2022 lúc 19:45

\(A=\left(x-3\right)^2+\left(x+1\right)^2\)

\(\Rightarrow A=x^2-6x+9+x^2+2x+1\)

\(\Rightarrow A=2x^2-4x+10\)

\(\Rightarrow A=2\left(x^2-2x+5\right)\)

\(\Rightarrow A=2\left[\left(x^2-2x+1\right)+4\right]\)

\(\Rightarrow A=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow A=2\left(x-1\right)^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(A_{min}=8\Leftrightarrow x=1\)

K.Hòa-T.Hương-V.Hùng
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 13:25

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

Nguyễn Huy Tú
12 tháng 3 2022 lúc 13:26

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

Trương Quang Thiện
Xem chi tiết
Nguyễn Thị Nhàn
21 tháng 9 2018 lúc 3:52

từ giả thiết ta có

a+b+c=0

<=>  a=-(b+c0

         a2=b2  +c2 +2bc

tương tự   b2=a2+c2+2ac

                c2=a2+b2+2ab

thay vào Q ta đc

\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)

\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)

\(Q=\frac{-b-a-c}{2abc}\)

\(Q=\frac{-\left(a+b+c\right)}{2abc}\)

\(Q=0\)

Vậy với a,b,c khác 0, a+b+c=0 thì Q=0

cấn mai anh
Xem chi tiết
Nhi Lê
Xem chi tiết
Pham Van Hung
30 tháng 8 2018 lúc 18:19

\(A=a^3-b^3-ab\)

   \(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

   \(=a^2+ab+b^2-ab\) (vì \(a-b=1\))

   \(=a^2+b^2\)

   \(=a^2+\left(a-1\right)^2\)

   \(=2a^2-2a+1\)

  \(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)

  \(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)

Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)

Chúc bạn học tốt.

Yuzuru
Xem chi tiết