tìm n thuộc Z sao cho 2n-3 chia het cho n+1
Tìm N thuộc Z sao cho : n-7 chia het cho 2n+3
tìm n thuộc Z sao cho a,n2+2n-4 chia hết cho 11 b,2n3+n2+7n+1 chia hết cho 2n-1 c,n4-2n3+2n2-2n+1 chia het cho n4-1 d,n3-n2+2n+7 chia het cho n2+1
(Chỉ là chia đa thức thôi mà!)
Anh giải câu b thôi, mấy câu còn lại tự làm nha.
\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)
Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)
tìm n thuộc Z để 2n^2-n+2 chia het cho 2n+1
\(2n^2-n+2⋮2n+1\)
\(2n^2+n-2n-1+3⋮2n+1\)
\(n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\left(2n+1\right)\left(n-1\right)+3⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-1\right)⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow n\in\left\{0;1;-1;-2\right\}\)
Vậy.........
tìm n thuộc z để 2n2-n+2 chia het cho 2n+1
TÌM n thuộc Z để 2n2 – n + 2 chia hết 2n + 1.
– | 2n2– n + 22n2 + n | 2n + 1 | |
n – 1 | |||
– | O – 2n + 2– 2n – 1 | ||
3 |
Phép chia hết khi : 2n + 1 có giá trị là U(3) ={ ±1; ±3}
khi : 2n + 1 = 1 => n = 0khi : 2n + 1 = -1 => n = -1khi : 2n + 1 = 3 => n = 1khi : 2n + 1 = -3 => n =-2Vậy : n = 0, – 1, 1, – 2
TÌM N THUỘC N SAO CHO 2N+5 CHIA HET CHO 2N-1
ta có ; 2n-1 chia hết 2n-1 mà 2n+5 chia hết cho 2n-1 tyương đương : ( 2n-1+6) chia hết cho 2n-1 suy ra 6 chia hết cho 2n-1 suy ra 2n-1 thuộc Ư(6) = ( 1;2;3;6) nếu 2n-1 = 1 thì n = 1 loài trường hợp 2n-1 = 2 vì lúc này n ko tồn tại ( nếu n là sô tự nhiên ) 2n-1 = 3 thì n = 2 loại trường hợp 2n-1 = 6 vì lí luận như trên vậy n = 1 và 2
a, 15 chia het cho n+1
b, -7 chia het cho n-3
c, -20 chia het cho 2n-3
a, n + 1 \(\in\)U(15)={-15;-5;-3;-1;1;3;5;15}
n \(\in\){ -16;-6;-4;-2;0;2;4;14}
b, n - 3 \(\in\)U (-7)={ -7;-1;1;7}
n \(\in\){ -4;2;4;10}
c, 2n - 3 \(\in\)U(-20)= {-20;-10;-5;-4;-2;-1;1;2;4;5;10;20}
ma 2n - 3 la so le , chia 2 du 1
vay 2n - 3 \(\in\){-5;-1;1;5}
n \(\in\){ -1;1;2;4}
tich cho minh nha ban , thanks
a) 15 chia hết cho n+1 <=> (n+1) thuộc Ư(15) (1)
mà: Ư(15)={1;-1;3;-3;5;-5;15;-15} (2)
Từ (1),(2)=> n+1 thuộc {1;-1;3;-3;5;-5;15;-15}
=>n thuộc {0;-2;2;-4;4;-6;14;-16}
tìm n thuộc Z để
3n chia hết cho 5- 2n
4n + 3 chia het cho 2n+6
3n chia hết cho 5- 2n
=>2.3n chia hết cho 2.(5-2n)
=>6n chia hết cho 10-6n
=>6n-10+10 chia hết cho 10-6n
=>-(10-6n)+10 chia hết cho 10-6n
=>10 chia hết cho 10-6n
=>10-6n thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
ta có bảng sau:
10-6n | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 3/2(loại) | 11/6(loại) | 1(TM) | 2(TM) | 5/6(loại) | 15/6(loại) | 0(TM) | 10/3(loại) |
Vậy n={1;2;0}
4n + 3 chia het cho 2n+6
=>4n+12-9 chia hết cho 2n+6
=>2.(2n+6)-9 chia hết cho 2n+6
=>9 chia hết cho 2n+6
=>2n+6 thuộc Ư(9)={1;-1;3;-3;9;-9}
ta có bảng sau:
2n+6 | 1 | -1 | 3 | -3 | 9 | -9 |
n | -5/2(loại) | -7/2(loại) | -3/2(loại) | -9/2(loại) | 3/2(loại) | -15/2(loại) |
Vậy n=\(\phi\)
3n chia hết cho 5- 2n
=>2.3n chia hết cho 2.(5-2n)
=>6n chia hết cho 10-6n
=>6n-10+10 chia hết cho 10-6n
=>-(10-6n)+10 chia hết cho 10-6n
=>10 chia hết cho 10-6n
=>10-6n thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
ta có bảng sau:
10-6n | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 3/2(loại) | 11/6(loại) | 1(TM) | 2(TM) | 5/6(loại) | 15/6(loại) | 0(TM) | 10/3(loại) |
Vậy n={1;2;0}
4n + 3 chia het cho 2n+6
=>4n+12-9 chia hết cho 2n+6
=>2.(2n+6)-9 chia hết cho 2n+6
=>9 chia hết cho 2n+6
=>2n+6 thuộc Ư(9)={1;-1;3;-3;9;-9}
ta có bảng sau:
2n+6 | 1 | -1 | 3 | -3 | 9 | -9 |
n | -5/2(loại) | -7/2(loại) | -3/2(loại) | -9/2(loại) | 3/2(loại) | -15/2(loại) |
Vậy n=\(\phi\)
tìm N thuộc Z sao cho (2n-3) chia hết cho (n=1)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Tìm n thuộc N sao cho
2n+3 chia het n-1
Giải giup minh voi
Tìm n thuộc N sao cho
2n+3 chia het n-1
Giải:Ta có: 2n + 3 = 2n - 2 + 5 = 2 ( n - 1 ) + 5
Để 2n+3 chia hết cho n-1 thì 5 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\).Vì x là số tự nhiên nên \(x\in\left\{0,2,6\right\}\) thỏa mãn
Có 2n +3⋮ n-1
\(\Rightarrow\)2.(n-1)+5⋮n-1
\(\Rightarrow\)5⋮n-1
\(\Rightarrow\)n-1\(\in\)Ư(5)={\(\pm\)1:\(\pm\)5}
\(\Rightarrow\)n\(\in\){2;0;6;-4}