giúp mình nữa đi nka
thực hiện phép tính
\(\sqrt{10^2-6^2}-\sqrt{13^2-12^2}+\sqrt{13^2}-\sqrt{12^2}\)
Giúp mình tính bài này với ạ =)) cần gấp.
a) \(\left(2+\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
b) \(\sqrt{6-2\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}\)
c) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
d) \(\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}-3\sqrt{2}\)
c/ = \(\sqrt{13+30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{25+2.3.5.\sqrt{2}+18}\)
\(=5+3\sqrt{2}\)
d/ \(=\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}\)
\(=\sqrt{13+6\sqrt{4+2\sqrt{2}-1}}\)
\(=\sqrt{13+6\left(\sqrt{3}+1\right)}\)
\(=\sqrt{19+6\sqrt{2}}\)
\(=3\sqrt{2}+1\)
Thực hiện phép tính sau
a) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\)
b) \(\sqrt{6-3\sqrt{3}}\left(\sqrt{6}+3\sqrt{2}\right)\)
c) \(\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\sqrt{\sqrt{5}+3}\)
d) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
e) \(\sqrt{5-\sqrt{13+6\sqrt{3}}}-\sqrt{5+\sqrt{13+6\sqrt{3}}}\)
thực hiện phép tính
a, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{3}}}}\)
c,\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
d,\(\sqrt{5-\sqrt{13+4\sqrt{3}}+}\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
Thực hiện phép tính sau
a, \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
b, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
c, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
d, \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)
\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)
b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)
c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)
\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)
\(=\dfrac{\sqrt{1\cdot4}}{2}\)
\(=\dfrac{2}{2}\)
\(=1\)
\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3-2\sqrt{2}}+\sqrt{9+4\sqrt{2}}+\sqrt{12-8\sqrt{2}}}\)
CÁC BẠN GIÚP MÌNH TÌM GIÁ TRỊ NHÉ
cho P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\) , Tìm GTLN của P
ĐKXĐ: \(x\ge0\)
Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1}\)
Để P lớn nhất thì: \(\frac{1}{\sqrt{x}+1}\)phải lớn nhất.Hay: \(\sqrt{x}+1\)nhỏ nhất
Theo ĐKXĐ,lại có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)
=>Min \(\sqrt{x}+1\)là 1 tại \(\sqrt{x}=0\Rightarrow x=0\)
=>Max P = \(1+\frac{1}{0+1}=2\)tại x=0
=.= hk tốt!!
Thực hiện các phép tính sau:
a, \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{\sqrt{3}+2}\)
b, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c, \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
d, \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
Thực hiện các phép tính sau:
a, \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
b, \(\sqrt{21-12\sqrt{3}}-\sqrt{3}\)
c, \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
d, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
e, \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)\
f, \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18}-\sqrt{128}}}\)
1. rút gọn biểu thức sau
\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
2. thực hiện các phép tính sau
a. \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
b. \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
c.\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
1. \(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
1/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\left(1+\sqrt{12}\right)^2}+\sqrt{3+\left(1+\sqrt{12}\right)^2}\)
\(=\sqrt{5-\left|1+\sqrt{12}\right|}+\sqrt{3+\left|1+\sqrt{12}\right|}\)
\(=\sqrt{5-1-\sqrt{12}}+\sqrt{3+1+\sqrt{12}}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
2/ a) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
b) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|1+\sqrt{5}\right|-\left|\sqrt{5}-1\right|=1+\sqrt{5}-\sqrt{5}+1=2\)
c) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{9}-\sqrt{8}\right)^2}+\sqrt{\left(1+\sqrt{8}\right)^2}\)
\(=\left|\sqrt{9}-\sqrt{8}\right|+\left|1+\sqrt{8}\right|\)
\(=\sqrt{9}-\sqrt{8}+1+\sqrt{8}=3+1=4\)
Chúc các bạn học tốt nhá!
Thực hiện phép tính:
\(\frac{2\sqrt{12}-\sqrt{6}}{2\sqrt{6}-\sqrt{3}}+\frac{10+\sqrt{5}}{2\sqrt{15}+\sqrt{3}}\)
\(\frac{2\sqrt{12}-\sqrt{6}}{2\sqrt{6}-\sqrt{3}}+\frac{10+\sqrt{5}}{2\sqrt{15}+\sqrt{3}}\)
\(=\frac{\sqrt{2}\left(2\sqrt{6}-\sqrt{3}\right)}{2\sqrt{6}-\sqrt{3}}+\frac{\sqrt{5}\left(2\sqrt{5}+1\right)}{\sqrt{3}\left(2\sqrt{5}+1\right)}\)
\(=\sqrt{2}+\frac{\sqrt{5}}{\sqrt{3}}\)
\(=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{3}}\)
p/s: chúc bạn học tốt