Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hoàng Dung
Xem chi tiết
Thái Khắc Đức An
Xem chi tiết
Phùng Minh Quân
28 tháng 3 2018 lúc 20:20

\(a)\) Ta có : 

\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)

Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-2\)\(2\)\(-4\)

Vậy \(n\in\left\{-4;-2;0;2\right\}\)

Phùng Minh Quân
28 tháng 3 2018 lúc 20:30

\(b)\) 

* Tính GTLN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi ) 

Để  đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN 

\(\Rightarrow\)\(n+1=1\)

\(\Rightarrow\)\(n=0\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)

Vậy \(A_{max}=6\) khi \(n=0\)

* Tính GTNN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a ) 

Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN 

\(\Rightarrow\)\(n+1=-1\)

\(\Rightarrow\)\(n=-2\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)

Vậy \(A_{min}=0\) khi \(n=-2\)

Chúc bạn học tốt ~ 

Hoàng Phú Huy
29 tháng 3 2018 lúc 9:38

a) Ta có : 

A = n + 1 3n + 6

= n + 1/ 3n + 3 + 3

= n + 1 /3n + 3 + n + 1 /3

= n + 1 /3 n + 1 + n + 1 /3

= 3 + n + 1 /3

Để A nguyên thì  n + 1/ 3  phải nguyên ⇒3⋮ n + 1 ⇒ n + 1 ∈ Ư 3 Mà Ư 3 = 1; − 1;3; − 3 Suy ra :  n + 1 /1 −1/ 3 −3 n 0 −2 2 −4

Vậy n ∈ {−4; − 2;0;2}

Nguyễn Minh Thư
Xem chi tiết
PHẠM CÔNG KHANG
Xem chi tiết
Akai Haruma
4 tháng 2 lúc 23:43

Lời giải:

$A=\frac{15-3n}{n+2}=\frac{21-3(n+2)}{n+2}=\frac{21}{n+2}-3$

Để $A$ lớn nhất thì $\frac{21}{n+2}$ lớn nhất

Điều này xảy ra khi $n+2>0$ và $n+2$ nhỏ nhất.

Với $n$ nguyên, $n+2>0$ và nhỏ nhất bằng 1

$\Rightarrow n+2=1$

$\Rightarrow n=-1$

------------------------------------

$B=\frac{17-2(2n+1)}{2n+1}=\frac{17}{2n+1}-2$

Để $B$ lớn nhất thì $\frac{17}{2n+1}$ lớn nhất

Điều này xảy ra khi $2n+1>0$ và $2n+1$ nhỏ nhất

Với $n$ nguyên thì $2n+1$ nguyên dương nhỏ nhất bằng 1

$\Rightarrow 2n+1=1$

$\Rightarrow n=0$

 

Nguyen Linh Nhi
Xem chi tiết
hiếu nhân
Xem chi tiết
ℓιℓι ♡
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 9:33

\(A=\dfrac{4n+6-7}{2n+3}=2-\dfrac{7}{2n+3}\)

A lớn nhất khi 2n+3=-1

=>2n=-4

=>n=-2

A nhỏ nhất khi 2n+3=1

=>n=-1

Beerus and Whis
Xem chi tiết
IQ 200000000000000000000...
3 tháng 4 2019 lúc 22:07

6n+70-(6n-14)=56 chia hết 2n-7

phần này tự tìm

còn lai thì cậu tách để chia

Beerus and Whis
3 tháng 4 2019 lúc 22:08

tai sao lai la the

IQ 200000000000000000000...
3 tháng 4 2019 lúc 22:10

để tìm gtri lớn nhất bé nhất

Nguyễn Thị Ngọc Anh
Xem chi tiết
Nguyễn Thị Ngọc Anh
4 tháng 5 2018 lúc 22:14

Ai giúp mk vs