tinh A=1+3/2^3+4/2^4+....+100/2^100
tinh a=1+3/2^3+4/2^4+...+100/2^100
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
tinh A=1+3/2^3+4/2^4+....+100/2^100
minh biet lam ne nhung ban phai cho minh nhe
ai giup minh lam bai nay voi
thanks nhieu
\(A=\frac{1}{1}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{1}{2}A=\frac{1}{2}.\left(\frac{1}{1}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\)
\(\frac{1}{2}A-A=\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\right)\)
\(\frac{1}{2}A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}-\frac{1}{2}-\frac{3}{2^4}-\frac{4}{2^5}-...-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}\right)-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\frac{\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{101}\right]}{\frac{1}{2}}-\frac{100}{2^{101}}\)
A=2
tinh A=1+3/2^3+4/2^4+....+100/2^100
A=99-(1/2 + 1/3+1/4+...+1/100) : (1/2+2/3+3/4+...+99/100)
tinh gia tri cua A.
tinh A=1+ 1/2 +1/(2*3) +1/(3*4)+...+1/(99*100)+100
cau 1
tinh A=1 +\(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+....+\frac{100}{2^{100}}\)
tinh
A=1/1+2+1/1+2+3+1/1+2+3+4+...................+1/1+2+3+4+...............+100
Tinh
B=1/2+2/2^2+3/2^3+4/2^4+.....+99/2^99+100/2^100
\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)
\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)
\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)
\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
Đặt :
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)
\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)
Tinh A = \(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2.A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
=> 2.A - A = \(\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
=> A = \(\left(2+\frac{3}{2^2}-1-\frac{100}{2^{100}}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)\)
A = \(1+\frac{3}{2^2}-\frac{100}{2^{100}}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}=\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)+\frac{2}{2^2}-\frac{100}{2^{100}}\)
Tính B = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
2.B = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\) => 2.B - B = \(1+\frac{1}{2}-\frac{1}{2^{99}}\)=> B = \(\frac{3}{2}-\frac{1}{2^{99}}\)
Vậy A = \(\frac{3}{2}-\frac{1}{2^{99}}+\frac{2}{2^2}-\frac{100}{2^{100}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=2=\frac{2^{101}-102}{2^{100}}\)