Cho tam giác ABC vuông tại A có AB=6 AC=8 AH là đường cao.
Tính BC
Cm HAB đồng dạng HCA
Trên cạnh BC Lấy điểm E sao cho CE=4 cm BE^2=Bh.BC
Giúp mình với
cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. AH là đường cao
a) tính BC
b) cm: tam giác HAB đồng dạng tam giác HCA
c) trên BC lấy E sao cho CE=4cm. Cm: BE2=BH.BC
d) tia phân giác góc ABC cắt AC tại D. Tính \(S_{CED}\)
a) tính BC:
Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC
ta có: BC2=BA2+AC2
=>BC2= 62+82
=> BC2= 36+64
=>BC2= 100
=> BC= \(\sqrt{100}\)
=> BC= 10 (cm)
b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:
Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)
- tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)
=> \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))
có bạn nào giúp minh câu c và d được k. mình k cho
c) Vì BE+CE=BC
\(\Rightarrow\)BE=BC-CE=10-4=6cm \(\Rightarrow\)AB=BE=6cm.
Bạn tự chứng minh hai tam giác HCA và ACB đồng dạng với nhau (g.g).\(\Rightarrow\)\(\frac{AH}{AC}\)=\(\frac{AB}{BC}\)
Vì bạn đã chứng minh tam giác HAB đồng dạng với HCA(g.g) \(\Rightarrow\)\(\frac{BH}{AB}\)=\(\frac{AH}{AC}\)
Tổng hợp lại, ta có:\(\frac{AB}{BC}\)=\(\frac{BH}{AB}\)
mà AB=BE=6cm(cmt)
\(\Rightarrow\)\(BE^2\)=BH.BC
Còn mình không biết làm câu d)
cho tam giác ABC vuông tại A . Biết AB = 6cm AC = 8cm . Kẻ đường cao AH
a Tính BC AH
b Cm tam giác HAB đồng dạng với tam giác HCA
c Tren BC lay E sao cho CE = 4cm . C/m BE^2=BH.BC
mọi người trả lời giúp tui vẽ hình lun nha
cho tam giác ABC có AB=6cm, AC= 8cm, AH là đường cao
Tính BCchứng minh tam giác HAB đồng dạng tam giác HCAtrên cạnh BC lấy điểm E sao cho CE=4cm, chứng minh BE2=BH.BCTia phân giác góc ABC cắt AC tại D. Tính tỉ số DA/DC, diện tích CEDCho tam giác vuông ABC vuông tại A, AH là đường cao.
a) Tính BC biết AB = 6cm, AC = 8cm.
b) Chứng minh tam giác HAB đồng dạng tam giác HCA.
c) Trên BC lấy điểm E sao cho CE = 4cm. Chứng minh BE2 = BH.BC
d) Vẽ phân giác BD. Tính diện tích tam giác CED.
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\) \(BC=\sqrt{100}=10\)
b) Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) (cùng phụ với góc HAC)
suy ra: \(\Delta HAB~\Delta HCA\)(g.g)
c) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) CHUNG
suy ra: \(\Delta ABH~\Delta CBA\) (g.g)
\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(BH.BC=AB^2\) (1)
\(BE=BC-CE=10-4=6\) \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\) (2)
Từ (1) và (2) suy ra: \(BE^2=BH.BC\)
d) \(S_{ABC}=\frac{AB.AC}{2}=24\)
\(\Delta ABC\) có \(BD\)là phân giác \(\widehat{ABC}\)
\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)
\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)
\(\Rightarrow\)\(S_{BAD}=9\)
Xét \(\Delta ABD\)và \(\Delta EBD\) có:
\(AB=EB\) (câu c)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD:\)chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)
\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)
p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha,
Cho tam giác ABC vuông tại A, AB=6, AC=8.
a) Tính BC
b) Vẽ đường cao AH của tam giác ABC. Chứng minh tam giác AHB đồng dạng tam giác HCA
c) Trên BC lấy điểm E sao cho CE=4. Chứng ming BE^2=BH.BC
d) Tia phân giác góc ABC cắt AC tại D. Tính diện tích tam giác CED
Cho tam giác ABC,AB=6cm,AC=8cm,AH là đường cao a)tính độ dài cạnh BC b)chứng minh tam giác HAB đồng dạng với tam giác HAC c)trên cạnh BC lấy điểm E sao cho CE=4cm,chứng minh BE^2=BH.BC d)tia phân giác của góc ABC cắt AC tại D.Tính diện tích tam giác CED Các bạn giúp mk vs mk cảm ơn trước
a: BC=10cm
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔHAB∼ΔHCA
∆ABC vuông tại A: AB=6cm,AC=8cm. a, Tính BC b, Vẽ đường cao AH của ∆ABC Chứng minh: ∆HAB∽∆HCA c, Trên BC lấy điểm E sao cho CE=4cm. Chứng minh: BE²= BH.BC
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó:ΔHAB\(\sim\)ΔHCA
Cho tam giác ABC vuông ở A ,đường cao AH , có AB = 6 cm , AC = 8 cm a.tính độ dài cạnh BC b.Chứng minh hai tam giác HAB và HCA đồng dạng c.Lấy điểm E trên cạnh BC sao cho CE = 4cm.Chứng Minh BE2=BH.BC d.Tia phân giác của góc ABC cắt cạnh AC ở D . Tính DIện Tích Tam Giác CED Làm Phiền Mọi Người Ạ
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Xét \(\Delta HAB\) và \(\Delta HCA\) có:
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) (cùng phụ với \(\widehat{B}\))
\(\Rightarrow\Delta HAB\sim\Delta HCA\) (g.g)
c) Em kiểm tra lại đề bài nhé.
Cho tam giác ABC, góc A = 90 độ, đường cao AH, phân giác BM. Gọi K là giao điểm AH và BM, AB=9cm, AC=12cm. a, tính BC, MA, MC b, chứng minh: tam giác HAB đồng dạng với tam giác HCA c, CM: AH.AC= AB.HC d, CM: AB.AB= BH.BC e, CM: tam giác AKM cân BH/AB=AB/BC d,
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm