CMR: Trong 2 số 2n-1 và 2n+1(n>2) luôn có 1 số là hợp số
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
P=(n^3+2n^2-1)/(n^3+2n^2+2n+1).
a) Rút gọn P .
b) CMR nếu n thuộc z thì giá trị của phân thức tìm được trong câu a tại n luôn là phân số tối giản
trong tập hợp số tự nhiên 1,2,....2n. ta lấy ra n+1 số. chứng minh rằng trong n+1 số luôn luôn tồn tại 2 số mà số này là bội của số kia
Giả sử trong 2n số nguyên dương đầu tiên có đúng m số nguyên tố là p1;p2,...;pm.Dễ chứng minh được rằng m⩽n
Chia 2n số nguyên dương đó thành m+1 tập con (có thể giao nhau) :A0;A1;A2;...;Am, trong đó :
A0={1}
Ai (1⩽i⩽m) gồm pi và tất cả các bội của nó trong 2n số nguyên dương đầu tiên.
Xét 2 trường hợp:
+) m < n
Khi đó m + 1 < n + 1⇒ trong n+1 số bất kỳ (chọn trong 2n số đó) chắc chắn có 2 số thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
+) m = n
+ Nếu trong n+1 số đó có số 1 (thuộc tập Ao) thì đpcm là hiển nhiên.
+ Nếu trong n+1 số đó không có số nào thuộc tập A0 thì chúng chỉ nằm trong m tập con còn lại.
Vì m<n+1 nên có ít nhất 2 số (trong n+1 số đó) thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
Như vậy, trong mọi trường hợp, luôn tìm được 2 số là bội của nhau từ n+1 số bất kỳ chọn trong 2n số nguyên dương đầu tiên.
Nguồn: https://diendantoanhoc.net/topic/132810-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-t%E1%BB%AB-n1-s%E1%BB%91-b%E1%BA%A5t-k%C3%AC-trong-2n-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-%C4%91%E1%BA%A7u-ti%C3%AAn-lu%C3%B4n-t%C3%ACm-%C4%91%C6%B0%E1%BB%A3c-hai-s%E1%BB%91-l%C3%A0-b%E1%BB%99i-c/
Mình cx bí bày này nên giải lại cho hiểu kĩ
Cmr: với m là số tự nhiên lẻ ta luôn có m^(2n)-1 chia het 2^(n+2)
CMR với mọi số nguyên dương n, ta luôn có đẳng thức sau :
\(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
với mọi n \(\in\)N* , bằng phương pháp quy nạp
Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có :
\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)
Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
=> Từ giả thiết quy nạp ta có :
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)
\(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)
\(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)
\(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*
Chứng minh rằng trong n + 1 số bất kì thuộc tập hợp { 1 ; 2 ; 3 ;.....; 2n } luôn tìm được hai số mà số này là bội của số kia.
https://www.youtube.com/watch?v=TA-H3IRTRLw
Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)
Cho a = 2^2n+1 + 2^n+1 +1 b= 2^2n+1 - 2^n+1 +1 CMR trong 2 số a,b có 1 số chia hết cho 5.
Chứng minh rằng trong n+1 số bất kì tronng tập hợp { 1,2,3,...,2n } luôn chọn được 2 số mà số này là bội số kia
CMR trong 2^n+1 - 1 số nguyên bất kỳ đều tồn tại 2n số có tổng là 1 số chẵn