CMR: n thuộc N ta có 5n-1 chia hết cho 4
cho n thuộc N CMR 5n - 1 chia hết cho 4
sai đề rồi 5n-1 chia hết cho 4 (n thuộc N*)
th1: n=1=> 5n=5
=> 5n-1 =4 chia hết cho 4
th2: n>1=> 5n có hai chữ số tận cùng là 25
=> 5n-1 có CSTC là 24 chia hết cho 4
P/S ghi đề cẩn thận nha
sory mk thiếu 1 trường hợp
TH3: n=0
=> 5n-1=0 chia hết cho 4
còn nữa đề là 5n-1chia hết cho 4(n thuộc N)
ko pk là n thuộc N* nha sorry mk làm lại hoàn chỉnh luôn nha
vì n thuộc N ta có:
TH1: n =0
=> 5n-1=0 chia hết cho 4
TH2: n=1
=> 5n-1 =4 chia hết cho 4
TH3: n>1=> 5n có CSTC là 24
=> 5n-1 có CSTC là 24 chia hết cho 4
vậy 5n-1 chia hết cho 4(n thuộc N)
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
CMR
a.A=12^2003^2004+2003^12^2004-2 chia hết cho 11
b.Cho x,y thuộc Z .cmr nếu 5n+2 chia hết cho 3 thì 25n^2+5n ko chia hết cho 3 với n thuộc N
CMR với mọi số nguyên n ta có:
a, ( n2+n-1)-1 chia hết cho 24
b, n5- 5n3+ 4n chia hết cho 120
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
CMR:(5n+2)2-4 chia hết cho 5 với mọi n thuộc Z
ta có : (5n + 2)2 - 4 = ((5n)2 + 2.2.5n + 22) - 4 = (5n)2 + 20n + 4 - 4
= 25n2 + 20n = 5n(5n + 4)
\(\Rightarrow\) (5n + 2)2 - 4 = 5n(5n + 4)\(⋮\)5 \(\Rightarrow\) (5n + 2)2 - 4 chia hết cho 5 với mọi n thuộc Z (đpcm)
Cmr với mọi n thuộc Z thì n^4+5n^2+9 không chia hết cho121
CMR
a,A=12^2003^2004+2003^12^2004-2 chia hết cho 11
b.Với n thuộc N. CMR: nếu 5n +2 chia hết cho 3 thì 25n^2 +5n ko chia hết cho 3