Cho tg ABC (AB bé hơn AC) phân giác của góc A cắt BC tại D trên AC lấy E sao cho AE= AB
a) CM: ∆ADB=∆ADE và AE lớn hơn DE
b)CM: DC lớn hơn DB
c)CM: AE= (AB+AC)\2
Cho tam giác ABC ( AB < AC ), phân giác góc A cắt cạnh BC tại D, trên cạnh AC lấy điểm E sao cho AE = AB
a, CM tam giác ADB = ADE và AE > DE
b, CM DC > DB
c, CM AE = AB + AC /2
tg ABC ( AB < AC ) pg AD trên cạnh AC lấy E sao AE =AB
a, cm tg ADB =tg ADE
b, đg DE cắt AB tại F cm EF=BC
C, cm AD vuông CF d, DC>DB
tu ke hinh:
a, xet tam giac ADE va tam giac ADB co : AD chung
goc EAD = goc DAB do AD la pg cua goc A (gt)
AE = AB (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
b, tam giac ADE = tam giac ADB (Cau a)
=> DE = DB (dn) (1)
goc DEA = goc DBA (dn)
goc DEA + goc DEC = 180 (kb)
goc DBA + goc DBF = 180 (kb)
=> goc DEC = goc DBF (2)
xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)
(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)
=> CE = BF
Cho tam giác ABC ( AB < AC ), phân giác góc A cắt cạnh BC tại D, trên cạnh AC lấy điểm E sao cho AE = AB
a, CM tam giác ADB = ADE và AE > DE
b, CM DC > DB
c, CM AE = AB + AC / 2
a: Xet ΔADB và ΔADE có
AB=AE
góc BAD=góc EAD
AD chung
DO đó: ΔADB=ΔADE
b: XétΔABC có AD là phân giác
nên DB/AB=DC/AC
mà AB<AC
nên DB<DC
Cho tam giác ABC (AC nhỏ hơn AB )Vẽ phân giác của A cắt BC tại D, trên cạnh AB lấy E sao cho AC = AE a) Chứng minh rằng CD = DE b )DB lớn hơn CD
a: Xét ΔCAD và ΔEAD có
AC=AE
\(\widehat{CAD}=\widehat{EAD}\)
AD chung
Do đó: ΔCAD=ΔEAD
Suy ra: CD=ED
b: Xét ΔABC có AD là đường phân giác
nên AB/BD=AC/CD
mà AB>AC
nên BD>CD
Cho tam giác ABC ( AB < AC ), phân giác góc A cắt cạnh BC tại D, trên cạnh AC lấy điểm E sao cho AE = AB
a,so sánh DB và DE
b, CM: AC - AB > DC - DB
a) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
cho tam giác ABC có AB<AC.Tia phân giác góc A cắt BC tại D.Trên AC lấy điểm E,sao cho AE=AB
a,CM DB=DE
b,CM AD vuông BE
c,Trên tia đối tia DA lấy điểm M. CM:tg BDM=tg EDM
a,Xét △AED và △ABD có
AE = AB (theo giả thiết)
EAD=BAD (theo giả thiết)
AD là cạnh chung
⇒△AED = △ABD (c.g.c)
⇒DE = DB (hai cạnh tương ứng)
b, gọi o là giao điểm của AD và BE
Xét △AEO và △ABO có
AE = AB (theo giả thiết)
EAO=BAO (theo giả thiết)
AO là cạnh chung
⇒△AEO = △ABO (c.g.c)
⇒AOE = AOB (hai góc tương ứng)
ta có : AOE + AOB = 180 độ (hai góc kề bù)
mà AOE = AOB
⇒AOE = AOB = 180 : 2 = 90
⇒ AO \(\perp\) EB hay AD \(\perp\) EB
c, vì AE = AB ⇒ △AEB cân tại A
⇒AEO = ABO
ta có : AEM = AEO + MEO
⇒MEO = AEM - AEO
ABM = ABO + MB
⇒MBO = ABM - ABO
mà AEO = ABO
⇒MEO = MBO
⇒△MEB cân tại M ⇒ME = MB
Xét △MEO và △MBO có
ME = MB (chứng minh trên)
MOE = MOB = 90 độ
MO là cạnh chung
⇒△MEO = △MBO (cạnh huyền - cạnh góc vuông)
⇒EMO = BMO (hai góc tương ứng)
Xét △BDM và △EDM có
ME = MB (chứng minh trên)
EMO = BMO (chứng minh trên)
MD là cạnh chung
⇒△BDM = △EDM (c.g.c)
mình trình bày rất mất thời gian nên nếu đúng thì tick mình nha
Cho tam giác ABC vuông tại A có AB lớn hơn AC So sánh góc B và góc C Tính độ dài cạnh AB biết BC = 10 cm AC = 6 cm trên cạnh BC lấy điểm D sao cho BD = AB đường thẳng vuông góc với BC tại D cắt AC ở E Chứng minh rằng tam giác ABE =tam giác DBE và AE
a: AB=8cm
b: xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE
Cho △ ABC vuông tại A có BD là phân giác của góc B (D thuộc AC) trên cạnh BC lấy điểm E sao cho BE = BA.
a) CM: Δ ADB = Δ EDB?
b) CM: BD là trung trực của AE?
c) CM: DE ⊥ BC, AD nhỏ hơn DC?
d) Kẻ AH vông góc BC tại H. chứng minh AE là phân giác góc HAC?
e) Gọi Cx là tia đối của CB. Tia phân giác của góc ACx cắt đường thẳng BD tại K. Tính góc BAK?
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
AD=DE
DE<DC
=>AD<DC
d: góc HAE+góc BEA=90 độ
góc CAE+góc BAE=90 độ
=>góc HAE=góc CAE
=>AE là phân giác của góc HAC
Cho tam giác ABC (AB < AC), phân giác góc A cắt cạnh BC tại D, trên cạnh AC lấy đoạn AE = AB.
a) Chứng minh: tam giác ADB = tam giác ADE và AE > DE
b) Chứng minh: DC > DB