Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fairy Tail
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
27 tháng 10 2020 lúc 21:34

AM-Gm đyyyyy

Giả sử P đạt min khi x=a=z>0; b=y>0; c=t>0. Khi đó bx=bz=ay; cx=cz=at và ta nghĩ đến việc sử dụng BĐT AM-GM như sau:

\(abxy\le\frac{b^2x^2+a^2y^2}{2}\left(1\right);abyz\le\frac{a^2y^2+b^2z^2}{2}\left(2\right);aczt\le\frac{c^2z^2+a^2t^2}{2}\left(3\right);actx\le\frac{a^2t^2+c^2x^2}{2}\left(4\right)\)

Từ (1);(2); (3) và (4) suy ra:

\(abcxy\le\frac{c\left(b^2x^2+a^2y^2\right)}{2}\left(5\right);abcyz\le\frac{c\left(a^2y^2+b^2z^2\right)}{2}\left(6\right);abczt\le\frac{b\left(a^2z^2+a^2t^2\right)}{2}\left(7\right);abctx\le\frac{b\left(a^2t^2+c^2x^2\right)}{2}\left(8\right)\)

Cộng các bất đẳng thức (5) (6) (7) (8) theo vế ta được

\(abc=abc\left(xy+yz+zt+tx\right)\le\)\(\frac{c\left(b^2x^2+a^2y^2\right)+c\left(a^2y^2+b^2z^2\right)+b\left(a^2z^2+a^2t^2\right)+b\left(a^2t^2+c^2x^2\right)}{2}=\frac{\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2}{2}\)

tức \(\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2\ge2abc\left(9\right)\)

Như vậy để tìm minP cần tìm các số a,b,c theo tỉ lệ thích hợp sao cho hệ số x2;y2;t2 chia nhau theo tỉ lệ 5:4:1

\(\frac{b^2c+bc^2}{5}=\frac{2a^2c}{4}=\frac{2a^2b}{1}\)

Mặt khác, ta có bất đẳng thức xảy ra khi x=z=a;y=b;c=t mà theo giả thiết xy+yz+zt+tx=1 nên phải có ab+bc+ca+ac=1

Và như vậy ta đưa được bài toán về việc giải hệ phương trình \(\hept{\begin{cases}\frac{bc\left(b+c\right)}{5}=\frac{a^2c}{2}=2a^2b\\a\left(b+c\right)=\frac{1}{2}\end{cases}}\)(*)

Giải hệ này ta tìm được \(a=\frac{1}{\sqrt[4]{50}};b=\frac{1}{\sqrt[4]{200}};c=\frac{1}{\sqrt[4]{200}}\)khi đó bất đẳng thức (9) trở thành

\(10a^2b\left(x^2+z^2\right)+8a^2by^2+2a^2b^2t^2\ge2abc\)

\(\Rightarrow P=5x^2+5z^2+4y^2+t^2\ge\frac{2abc}{2a^2b}=\frac{c}{a}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

Vì vậy ta có đẳng thức xảy ra khi \(x=z=a=\frac{1}{\sqrt[4]{50}};b=y=\frac{1}{\sqrt[4]{200}};c=t=\frac{1}{\sqrt[4]{200}}\)

Khách vãng lai đã xóa
pro
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 19:31

\(4x^2+4y^2\ge8xy\)

\(16x^2+z^2\ge8zx\)

\(16y^2+z^2\ge8yz\)

Cộng vế với vế:

\(20x^2+20y^2+2z^2\ge8\left(xy+yz+zx\right)\)

\(\Leftrightarrow10x^2+10y^2+z^2\ge4\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 15:04

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

ミ★ήɠọς τɾίếτ★彡
7 tháng 8 2021 lúc 15:31

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673

Nguyễn Khánh A
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
Su_LoVe
Xem chi tiết
๖Fly༉Donutღღ
8 tháng 5 2018 lúc 20:50

Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và  \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và  \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta thu được các BĐT sau:  \(x^2+b^2y^2\ge2bxy\)

                                                                         \(by^2+z^2\ge2byz\)

                                                                         \(a\left(z^2+x^2\right)\ge2azx\)

Cộng các vế theo các vế các BĐT thu được để có: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết )  thì \(P=\frac{\sqrt{17}-3}{2}\)

Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)

Diệp Nguyễn Thị Huyền
Xem chi tiết
thảo nguyễn thị
Xem chi tiết