(1/3-2x)^102+(3y-x)^104 = 0 . Tìm x; y
(1/3-2x)^102 (3y-x)^104 = 0 . Tìm x; y
Vì (1/3-2x)^102 và (3y-x)104 lớn hơn hoặc bằng 0 với mọi x và y
=>(1/3-2x)^102 và (3y-x)^104=0
Ta có: (1/3-2x)^102=0
=>1/3-2x=0
=>2x=1/3
=>x=1/6
Ta có:(3y-x)^104=0
=>3y-1/6=0
=>3y=1/6
=>y=1/18
Vậy x=1/6 và y=1/18
(1/3-2x)^102+(3y-x)^104=0
tìm x, y
mu chan => lon hon hoac bang 0 => 1/3-2x = 0, 3y - x=0
(1/3-2x )^102+(3y-x)^104=0
Ta có:
\(\left(\frac{1}{3}-2x\right)^{102}+\left(3y-x\right)^{104}=0\left(1\right)\)
Nhận thấy:
\(\left(\frac{1}{3}-2x\right)^{102}\ge0;\left(3y-x\right)^{104}\ge0\forall x,y\)
Do đó (1) xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
Giúp mình với??:(
Tìm x; y; z biết :
1) x/2 = y/3 ; y/4 = z/5 và x – y + z = 10
2) 4x = 3y ; 7y = 5z và 2x + 3y - z= 136
3) x-3/5 = y-5/1 = z+3/7 và 3x + 5y - 7z = 100
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
tìm x biết:
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
tìm x biết:
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
\(\dfrac{x-1}{99}-\dfrac{x+1}{101}+\dfrac{x-2}{98}-\dfrac{x+2}{102}+\dfrac{x-3}{97}-\dfrac{x+3}{103}+\dfrac{x-4}{96}-\dfrac{x+4}{104}=0\)
<=> \(\dfrac{x-1}{99}-1-\dfrac{x+1}{101}-1+\dfrac{x-2}{98}-1-\dfrac{x-2}{102}-1+\dfrac{x-3}{97}-1-\dfrac{x+3}{103}-1+\dfrac{x-4}{96}-1-\dfrac{x+4}{104}=0\)
\(\dfrac{x-1}{99}-\dfrac{x+1}{101}+\dfrac{x-2}{98}-\dfrac{x+2}{102}+\dfrac{x-3}{97}-\dfrac{x+3}{103}+\dfrac{x-4}{96}-\dfrac{x+4}{104}=0\)
gặp mấy dạng này + hoặc - cho 1 số nào đó là giải đc , bn tự lm xem
3. Tìm x.
a) |x+1|+|x+5|=4
b) |2x-1|+|x-3y|=0
a) |x+1|+|x+5|=4
\(\Rightarrow x+1+x+5=\pm4\)
\(x+1+x+5=4\)
\(\Rightarrow x^2+1+5=4\)
\(x^2+6=4\)
\(x^2=4-6\)
\(\Rightarrow x^2=-2\)
\(x+1+x+5=-4\)
\(x^2+6=-4\)
\(x^2=-8\)
a) trường hợp 1:x\(\ge\)-1
x+1+x+5=4\(\Rightarrow2x+6=4\Rightarrow x=-1\)(TM)
TH2:\(-5\le x< -1\)
-x-1+x+5=4(phương trình vô nghiệm)
TH3:x<-5
-x-1-x-5=4\(\Rightarrow-2x-6=4\Rightarrow-5\)(KTM)
vậy x=-1
b)
b: Ta có: \(\left|2x-1\right|\ge0\forall x\)
\(\left|x-3y\right|\ge0\forall x,y\)
Do đó: \(\left|2x-1\right|+\left|x-3y\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(\dfrac{1}{2};\dfrac{1}{6}\right)\)
a x(x+3)=0
b (x+2)(7-x)>0
c (x^2+1)(49-x^2)=0
d (2x-1)(4y-2)=-42
e (2x+1)(3y-2)=-55
f xy-2x-3y=5
Tìm x,y thuôc Z