Cho tam giác ABC có A= 180 độ - 3C và B=70 độ
a) Tính số đo góc A và C của tam giác ABC;
b) Vẽ tia phân giác của góc B cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại D.
cho tam giác ABC=tam giác DEG biết DE=15cm, e=70 độ và a-c=40 độ
a) tính số đo các góc của hai tam giác
b) tính độ dài canh AB
Cho hình tam giác ABC, có góc A = 80 độ và góc B - góc C = 20 độ
a) Tính số đo các góc B,C của tam giác ABC
b) Gọi AD là tia phân giác của góc A. Tính số đo của góc ADB
Cho tam giác ABC có A=180 độ -3C và B=70 độ
a) Tính góc A và góc C
Cho tam giác ABC có A = 90 độ và B-C=20 độ
a. Tính số đo các góc và .
b. Chứng tỏ tổng số đo các góc ngoài ở ba đỉnh của một tam giác bằng 1800.
a. B = 55 độ
C = 35
b. lỗi. phải là 360 độ
ông họ ngô
tôi họ đinh
Cho tam giác ABC = tam giác MNP
Biết BC = 6cm, góc B = 70 độ và C = 50 độ
a) Tính NP
b) Tính các góc của tam giác MNP
a: ta có; ΔABC=ΔMNP
=>BC=NP
mà BC=6cm
nên NP=6cm
b: Ta có: ΔABC=ΔMNP
=>\(\widehat{B}=\widehat{N}\)
mà \(\widehat{B}=70^0\)
nên \(\widehat{N}=70^0\)
Ta có: ΔABC=ΔMNP
=>\(\widehat{C}=\widehat{P}\)
mà \(\widehat{C}=50^0\)
nên \(\widehat{P}=50^0\)
Xét ΔMNP có \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
=>\(\widehat{M}+50^0+70^0=180^0\)
=>\(\widehat{M}=60^0\)
Cho tam giác ABC vuông tại A có góc B = 60 độ
a)Tính số đo góc C và so sánh độ dài 3 cạnh của tam giác ABC.
b)Vẽ BD là tia phân giác của góc ABC (D thuộc AC). Qua D vẽ DK vuông góc với BC (K thuộc BC). Chứng minh tam giác BAD=tam giác BKD.
c)Chứng minh tam giác BDC cân và K là trung điểm BC.
d)Tia KD cắt BA tại I. Tính độ dài cạnh ID biết AB=3cm (làm tròn kết quả đến chữ số thập phân thứ nhất).
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)
hay \(\widehat{ACB}=30^0\)(1)
Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)
nên AB<AC<BC
b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))
Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)
c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)
nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)
nên ΔDBC cân tại D(Định lí đảo của tam giác cân)
Xét ΔBDK vuông tại K và ΔCDK vuông tại K có
DB=DC(ΔDBC cân tại D)
DK chung
Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)
Suy ra: BK=CK(hai cạnh tương ứng)
hay K là trung điểm của BC(Đpcm)
c Cho tam giác ABC có A=70 độ , B=C . Biết . Tính số đo của góc B và góc C
Vì góc B= góc C nên 2 góc =55 độ
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180\text{°}\)(tổng 3 góc trong 1 tam giác)
mà \(\widehat{B}=\widehat{C}\)
⇒\(\widehat{A}+\widehat{B}+\widehat{B}=180\text{°}\)
\(70\text{°}+2\widehat{B}=180\text{°}\)
\(2\widehat{B}=110\text{°}\)
\(\widehat{B}=55\text{°}\)
⇒\(\widehat{C}=\widehat{B}=55\text{°}\)
B + C = 180 - 70 = 110
Mà B = C
=> B = C = 110/2 = 55
Cho tam giác ABC có góc C=70 độ và góc A hơn góc B 30 độ hãy tính số đo góc A,B
Cho tam giác ABC có A= 70 độ , tia phân giác của góc B và góc C cắt nhau tại I .Tính số đo của BIC
Cậu tự vẽ hình !
Theo tổng ba goác trong một tam giác , ta có :
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=110^0\)
Vì I là là giao điểm ba đường phân giác nên
BI là phân giác của góc ABC
\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
CI là phân giác của góc ACB
\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
Ta có :
\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)
Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì
=> Góc BIC = 1800 - 500 = 1300