Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Lê Dương
Xem chi tiết
Nguyen Viet Dat
6 tháng 1 2016 lúc 12:55

Xet bieu thuc: 6(7a+3b)+(4a+5b)

=42a+18b+4a+5b

=46a+23b

=23(2a+b)

Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:

Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23

Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:

Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23

Phan Mai Anh
Xem chi tiết
Đỗ Lê Tú Linh
8 tháng 4 2015 lúc 22:13

a)9a+6b=(9+60)*(a+b)=15*(a+b)

vì 15 : 15 nên a+b cũng chia hết cho 15

điều ngược lại thì mk 0 hiểu

Nguyễn Vũ Linh Nhi
Xem chi tiết
Trần Hoài Ngọc
Xem chi tiết
Minh Ngoc
Xem chi tiết
Nguyễn Thu Hoài
Xem chi tiết
KIRITO
Xem chi tiết
KIRITO
18 tháng 1 2016 lúc 12:27

làm ms tick

mik ko bh đổi tick vs ai hết

helloa4
Xem chi tiết
Đào Đình Phong
22 tháng 11 2021 lúc 10:29

sssssssssssss

Khách vãng lai đã xóa
helloa4
Xem chi tiết
o0o đồ khùng o0o
5 tháng 1 2017 lúc 9:11

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:27

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

To Thi Bich Thao
29 tháng 7 2019 lúc 22:09

gbvn nngvjn