Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pé Ken
Xem chi tiết
HQ fanclub
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Ngu Ngu Ngu
18 tháng 4 2017 lúc 10:03

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

Phan Văn Hiếu
18 tháng 4 2017 lúc 12:18

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok

Nguyễn Thị Minh Khuê
Xem chi tiết
Nguyễn Linh Chi
25 tháng 4 2020 lúc 19:09

Đặt: \(y^2=\) \(x^4+\left(x+1\right)^3-2x^2-2x\)

\(x^4+x^3+x^2+x+1\) là số chính phương 

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có: 

\(4y^2=4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

\(4y^2=4x^4+4x^3+4x^2+4x+4\le4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\orbr{\begin{cases}4y^2=\left(2x^2+x+2\right)^2\\4y^2=\left(2x^2+x+1\right)^2\end{cases}}\)

TH1: \(4y^2=\left(2x^2+x+2\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+9x^2+4x+4\)

<=> \(x=0\)thỏa mãn

Th2: \(4y^2=\left(2x^2+x+1\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+5x^2+1+4x^3+2x\)

<=> \(x^2-2x-3=0\)

<=> x = 3 hoặc x = -1. thử lại thỏa mãn 

Vậy x = 0 ; x = -1 hoặc x = 3

Khách vãng lai đã xóa
duc phuc
Xem chi tiết
Lê Thị Thục Hiền
21 tháng 8 2021 lúc 9:43

a. \(x=\left\{4;9;16\right\}\)

b. \(x=1\)

c. \(x=\left\{-2;-1\right\}\)

MC Six paths tails
Xem chi tiết
Phùng Thanh Khôi
26 tháng 9 2021 lúc 20:27

Mode 5 3 trên máy tính Casio fx-570 :

a) a=1,b=-2,c=-4

b) a=1,b=-2,c=7 

 

 

 

Xua Tan Hận Thù
Xem chi tiết
Xua Tan Hận Thù
18 tháng 11 2017 lúc 21:02

MK ko biế đúng ko nữa , sai thì ý kiến

a)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chúc các bn hok tốt

Tham khảo nhé

nguyen thi tuyet nhi
Xem chi tiết
Đặng Phương Thảo
11 tháng 7 2015 lúc 7:29

Dây là 4 số  nguyên dương liên tiếp, còn phần  kia tương tự nha

Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N 
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2) 
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N) 
Ta thấy 
t² < A = t² + 2t < t² + 2t + 1 = (t+1)² 
=> A nằm giữa 2 số chính phương liên tiếp 
=> A không phải là số chính phương (đpcm)

Phạm Trần Trà My
11 tháng 7 2015 lúc 7:21

bạn ơi, mấy bn hok giỏi ko onl ùi

Sakura nhỏ bé
11 tháng 7 2015 lúc 7:26

chắc tại mưa nên mấy bn ấy k onl

Sakura
Xem chi tiết
tth_new
6 tháng 12 2018 lúc 9:39

2/ 

a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\) (\(x,y\ne0;x,y\ge1\))

Vai trò của x và y là bình đẳng,giả sử \(x\ge y\ge1\)

Hiển nhiên,ta có: \(\frac{1}{y}< \frac{1}{3}\Rightarrow y>3\).Mà y nguyên nên \(y\ge4\)

Mặt khác, do \(x\ge y\ge1\)nên \(\frac{1}{x}\le\frac{1}{y}\).Do vậy:

\(\frac{1}{3}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\)

\(\Rightarrow\frac{2}{y}\ge\frac{1}{3}\Rightarrow y\le6\)

Từ đó,ta xác định được khoảng giá trị của y là: \(4\le y\le6\)

+Với y = 4 suy ra x = 12

+Với y = 5 suy ra x = 2/15 (loại,vì x không là số nguyên)

+Với y = 6 suy ra x = 6

Vậy các nghiệm của phương trình: (4;12), (12;4), (6,6)