(a+b+c)(1/a+1/b+1/c)>=9
cho ba số a, b, c thỏa mãn abc = 27 và 1/a+1/b+1/c = (a+b+c)/9 Chứng minh (a*2020-9*1010)(b*2020-9*1010)(c*2020-9*1010)=0
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Tính A=(a+b)(b+c)(c+a) + 9
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)=>\(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
=>abc=(bc+ac+ab)(a+b+c)=ab2+a2b+ac2+a2c+bc2+bc2+3abc
=ab(a+b)+ac(a+c)+bc(b+c)+3abc
=>ab(a+b)+ac(a+c)+bc(b+c)+2abc=0
=>ab(a+b+c-c)+ac(a+c+c-c)+bc(b+c)+2abc=0
=>(a-c)[ac+ab)]+(b+c)(ab+bc)+2ac2+2abc=0
=>(a-c)a(c+b)+(b+c)b(a+c)+2ac(b+c)=0
=>(b+c)[(a-c)a+b(a+c)+2ac]=0
=>(b+c)(a2-ac+ab+bc+2ac)=0
=>(b+c)(a2+ab+bc+ac)=0
=>(b+c)[a(a+b)+c(a+b)]=0
=>(b+c)(a+c)(a+b)=0
*A=(b+c)(a+c)(a+b)+9=0+9=9.
Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
⇔ \(\dfrac{ab+ac+bc}{abc}=\dfrac{1}{a+b+c}\)
⇔ ( ab + ac + bc )( a + b + c) = abc
⇔ a2b + ab2 + b2c + bc2 + a2c + ac2+ 3abc = abc
⇔ a2b + ab2 + b2c + bc2 + a2c + ac2+ 2abc = 0
⇔ (a+b)(b+c)(c+a) = 0
Vậy A = 0 + 9 = 9
1, a^2+b^2+c^2 >= ab + bc + ca 2, ( a+b+c)*(1/a + 1/b + 1/c) >= 9 3, a/b +b/c + c/a >= 0 a,b,c>0
1, a^2+b^2+c^2 >= ab + bc + ca 2, ( a+b+c)*(1/a + 1/b + 1/c) >= 9 3, a/b +b/c + c/a >= 0 a,b,c>0
\(1,\text{Giả sử }a^2+b^2+c^2\ge ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)
Dấu \("="\Leftrightarrow a=b=c\)
\(2,\forall a,b,c>0\\ \text{Áp dụng BĐT cosi: }\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)
Dấu \("="\Leftrightarrow a=b=c\)
1. cho A=(a-b+c)-(-a-b-c)
a, rút gọn A
b, tính khi a=1,b=-1 ,c=5
bài 2: tìm a biết
a,a+b-c=18 biết b= 10,c=-9
b, 12-a+b+5c=-1 biết b=-7, c=5
c, 1+2b-3a=-9 biết b=-3, c=-7
BÀI 1:
A) A=(a-b+c)-(-a-b-c)
A=a-b+c--a+b+c
A=a--a+b-b+c+c
A=0+0+2c
A=2c
B) A=(a-b+c)-(-a-b-c)
thay số: A=(1--1+5)-(-1--1-5)
A=7--5
A=12
BÀI 2:
a) ta có a+b-c=18
thay số : a+10-(-9)=18
a+19=18
a=18-19
a=-1
b) ta có 12-a+b+5c=-1
thay số: 12-a+(-7)+5.5=-1
12-a+(-7)+25=1
12-a+18=-1
12+18-a=-1
30-a=-1
a=30--1
a=31
c) ta có 1+2b-3a=-9
thay số : 1+2.(-3)-3a=-9
bn NGUYỄN THỊ BÌNH ơi phần C mk đâu thấy có c trong biểu đâu,bn xem lại xem có sai đề bài phần C ko, bảo mk?
1+3.(-2-a)=-9
3.(-2-a)=-9-1=-10
-2-a=-10:3=-10\3
a=-2--10\3
a=4\3
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
chúc bn hok tốt
cho a+b+c=1 ,a>0,b>0,c>0
cmr (1/a +1/b + 1/c)≥9
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)
Dấu = xảy ra khi a=b=c=1/3
Áp dụng hệ quả bất đẳng thức Cô - si , ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)
\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\cdot1\ge9\)
\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Áp dụng BĐT Cauchy Shwarz dạng Engel ta được:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge \dfrac{(1+1+1)^2}{a+b+c}=\dfrac{9}{1}\)
\(\to \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge 9\)
\(\to\) Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
\(\to a=b=c\)
Cho a,b,c>0 và a+b+c=1. Chứng minh 1/a + 1/b + 1/c >=9
1) Cho a+b-2018c/c=b+c-2018a/a=a+b-2018b/b
a) Tính Q = (1+b/a).(1+c/b).(1+a/c)
b) Tính P = (a+b).(b+c).(c+a)/abc
2) Cho x+16/9=y-25/16=z+9/25 và 2x^3 - 1=15
3)a/b=b/c=c/a ( a+b+c khác 0). Tính B a^5.b^2.c^1930/b^1937
nhờ các bác hết đấy ạ, nếu k có các bác thì tui biết phải làm như nào đây huhu. Làm đúng sẽ có thưởng nha các bác ơi!!!
Bài 2:
2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{2+16}{9}=2\)
=>y-25=32; z+9=50
=>z=41; y=57
1) Cho a+b-2018c/c=b+c-2018a/a=a+b-2018b/b
a) Tính Q = (1+b/a).(1+c/b).(1+a/c)
b) Tính P = (a+b).(b+c).(c+a)/abc
2) Cho x+16/9=y-25/16=z+9/25 và 2x^3 - 1=15
3)a/b=b/c=c/a ( a+b+c khác 0). Tính B a^5.b^2.c^1930/b^1937
Lại.......
Bài 2:
2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>(y-25)/16=(z+9)/25=2
=>y-25=32 và z+9=50
=>z=41 và y=57
Cho các số dương a, b, c thỏa mãn: a+b+c=1. CMR: \(4.\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+9\)