Tìm số tự nhiên n biết rằng 1+2+3+4+...+ n = 378
Tìm số tự nhiên n , biết : 1+2+3+4+....+n=378
1+2+3+4+....+n=378
(1+n).n:2=378
(1+n).n=378.2
(1+n).n=756
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp mà 756=27.28
=>n=27
1+2+3+4+...+n=378
(1+n).n:2=378
(1+n).n=378.2
(1+n).n-=756
Ta thấy (1+n) . n là tích của 2 số tự nhiên liên tiếp mà 756=27.28
nên n=27
Tìm số tự nhiên n, biết rằng: 1+2+3+4+...+n=231
1 + 2 + 3 + 4 + ... + n = 231
Có n số hạng
=> (n + 1).n : 2 = 231
=> (n + 1).n = 231.2
=> (n + 1).n = 462
=> (n + 1).n = 22.21
=> n = 21
Vậy n = 21
1+2+3+4+.....+n=231
1+2+3+4+.....+21=231
\(\Rightarrow n=21\)
bài1
Tìm số tự nhiên nhỏ nhất biết số đó khi chia cho 3 dư 1,chia cho 5 dư 3,chia cho 7 dư 5
Bài 2
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 3
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 4
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
Tìm số tự nhiên n , biết rằng :
a) 1+2+3+4+...+n=231
b) 1+3+5+7+...+(2n-1)=169
a) Số số hạng là
(n-1):1+1=n(số)
Ta có: \(\dfrac{\left(n+1\right).n}{2}=231\)
\(\left(n+1\right).n=462\)
n=21
b) Số số hạng là
[(2n-1)-1]:2+1=n(số)
Ta có: \(\dfrac{\left(2n-1+1\right).n}{2}=\dfrac{2n^2}{2}=n^2=169\)
⇒n=13
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
Bài 1
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 2
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 3
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
Tìm số tự nhiên n biết rằng
1+2+3+4+...…..+n =820
1 + 2 + 3 + 4 + ... + n = 820
n + ( n - 1 ) + ( n - 2 ) + ( n - 3 ) +... + 1 = 820
= ( n + 1 ) + ( n + 1 ) + ( n + 1 ) + ... + ( n + 1 ) = 820 + 820
=> n ( n + 1 ) = 820 x 2
=> n2 + n + 1 = 1641
=> n2 + n/2 + n/2 + 1/4 + 3/4 = 1641
=> ( n + 1/2 )2 = 1641 - 3/4 = 6561/4 = ( 81/2 )2
=> n + 1/2 = 81/2
=> n = 81/2 - 1/2
=> n = 40
Câu 17. Tìm tất cả các số tự nhiên n sao cho (n – 1) là ước của (3.n + 6)
Câu 22: Cho A = 3 + 32 + 33 + …. + 32025 .Câu 17
Để n - 1 là ước của 3n + 6 thì (3n + 6) ⋮ (n - 1)
Ta có:
3n + 6 = 3n - 3 + 9 = 3(n - 1) + 9
Để (3n + 6) ⋮ (n - 1) thì 9 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ n ∈ {-8; -2; 0; 2; 4; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 4; 10}
Câu 22
A = 3 + 3² + 3³ + ... + 3²⁰²⁵
⇒ 3A = 3² + 3³ + 3⁴ + ... + 3²⁰²⁶
⇒ 2A = 3A - A
= (3² + 3³ + 3⁴ + ... + 3²⁰²⁶) - (3 + 3² + 3³ + ... + 3²⁰²⁵)
= 3²⁰²⁶ - 3
⇒ 2A + 3 = 3²⁰²⁶ - 3 + 3
⇒ 2A + 3 = 3²⁰²⁶
Mà 2A + 3 = 3ⁿ
⇒ 3ⁿ = 3²⁰²⁶
⇒ n = 2026
Câu 20:
a) x + 198 = 203
x = 203 - 198
x = 5
b) 3(x - 4) - 123 = 15
3(x - 4) = 15 + 123
3(x - 4) = 138
x - 4 = 138 : 3
x - 4 = 46
x = 46 + 4
x = 50
c) 3.4ˣ⁻² - 156 = 6²⁰²⁴ : 6²⁰²²
3.4ˣ⁻² - 156 = 6²
3.4ˣ⁻² - 156 = 36
3.4ˣ⁻² = 36 + 156
3.4ˣ⁻² = 192
4ˣ⁻² = 192 : 3
4ˣ⁻² = 64
4ˣ⁻² = 4³
x - 2 = 3
x = 3 + 2
x = 5
d) 2ˣ⁺¹ - 2ˣ = 32
2ˣ.(2 - 1) = 2⁵
2ˣ = 2⁵
x = 5
Bài 1:Tìm số tự nhiên n, sao cho:
1 + 2 + 3 + .... + n = 378
Bài 2: Các số 30 và 17 khi chia cho số tự nhiên a(a+1) đều được số dư là r. Tìm a và r
Bài 1 :
(1+n).n:2=378
(1+n).n=378.2
(1+n).n=756
(1+n).n= 27.28
Vậy n=27
( nhớ tick đúng cho mình )