Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Trí Ngân
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Phương Anh
Xem chi tiết
Dương Hoàng Minh
19 tháng 6 2016 lúc 7:39

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

Nguyễn Minh Nhật
Xem chi tiết
Tran Quang Minh
Xem chi tiết
Đặng Minh Triều
17 tháng 6 2016 lúc 12:02

bạn tách từng câu ra mik suy nghĩ từng câu

Vũ Nguyễn Hiếu Thảo
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
tthnew
31 tháng 10 2019 lúc 10:17

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

Khách vãng lai đã xóa
tthnew
31 tháng 10 2019 lúc 10:32

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((

Khách vãng lai đã xóa
ngo hoang khang
Xem chi tiết
ngo hoang khang
25 tháng 10 2018 lúc 22:06

khong lay so 1 nho nha

Đặng Vũ Hoàng
25 tháng 10 2018 lúc 22:09

\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+2-2\sqrt{ }x+1}=\frac{x+5}{2}\)\(\frac{x+5}{2}\)

Nguyễn Tấn Phát
16 tháng 7 2019 lúc 21:10

Xét \(x^2+\sqrt{1+x^2}\)ta có:

\(x^2\ge0\)

nên \(1+x^2\ge1\)

\(\Rightarrow\sqrt{1+x^2}\ge\sqrt{1}=1\)

\(\Rightarrow x^2+\sqrt{1+x^2}\ge1\)

Tương tự ta có: 

\(y^2+\sqrt{1+y^2}\ge1\)

Do đó: \(\left(x^2+\sqrt{1+x^2}\right)\left(y^2+\sqrt{1+y^2}\right)\ge1\)

Dấu bằng xảy ra khi \(x=0;y=0\)

Khi đó \(x+y=0\left(ĐPCM\right)\)

La. Lousia
Xem chi tiết