Tìm x,y nguyên thoả mãn: \(8x^2+y^2-2xy-x^2y^2=0\)
Tìm số nguyên x,y thoả mãn: \(8x^2+y^2-2xy-x^2y^2=0\)
Tìm các số nguyên x,y thỏa mãn: \(8x^2+y^2-2xy-x^2y^2=0\)
tìm x để p đạt giá trị lớn nhất thoả mãn x^2+2y^2+2xy-8x+2y-8=0
\(x^2-2xy+2y^2+5z^2+4yz-4z+4=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2+4yz+4z^2+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2z\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2z=0\\z-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-4\\z=2\end{cases}}\)
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
cho x,y là 2 số thực thoả mãn x^2+2y^2+2xy+7x+7y+10=0.tìm GTNN và GTLN x+y+1
Tìm các số nguyên x,y thoả mãn 5x^2 +2xy+y^2-16x+16=0
\(5x^2+2xy+y^2-16x+16=0\)
=>\(x^2+2xy+y^2+4x^2-16x+16=0\)
=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)
=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Tìm các số nguyên x,y thoả mãn đẳng thức: \(2xy^2+x+y+1=x^2+2y^2+xy\)