Giải và biện luận:
a) \(\dfrac{x}{a}+a>x+1\) (a>1)
b) ax - b> bx + a
Giải và biện luận phương trình
a/ax-1 + b/bx-1 = a+b/(a+b)x-1
Giải và biện luận pt a/1-ax=b/1-bx
Giups mik not bai nay
Giải và biện luận phương trình : \(\frac{a}{ax-1}+\frac{b}{bx-1}=\frac{a+b}{\left(a+b\right)x-1}\) (1)
ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\) (2)
Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\) (3)
TH1 : a = b = 0
Điều kiện 2 luôn đúng , khi có :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)
TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)
TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)
TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)
Khi đó : (3) \(\Leftrightarrow x=0\), là nghiệm duy nhất của phương trình .
TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)
Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)b
KL : ............
giải pt và biện luận:
a/1+bx=b/1+ax
Bài 1: Giải và biện luận:
a) \(\dfrac{ax-b}{a}>\dfrac{b}{a}-\left(a+b\right).x\)
b) \(\left[\dfrac{4.x+1}{6}\right]=3.x-1\)
cho em hỏi 4 câu này với ạ :d
giải và biện luận bất ptrinh bậc nhất 1 ẩn sau :
x - (1+x)m2 + 2m >= 2 - m
bx + b < a - ax
x + 1 > bx / a + a/b
x - ab / a + b + x - ac / a + c + x -bc / b+c <= a + b +c
a. \(\frac{a}{ax-1}\)+ \(\frac{b}{bx-1}\)= \(\frac{a+b}{\left(a+b\right)x-1}\) giải và biện luận pt
b. a(ax+b\(^2\)) -a\(^2\)+ b\(^2\)(x+a)
c. a(x-b)-1= b(1-2x)
giải và biện luận phương trình sau với a, b là tham số
1/ \(b\left(ax-b+2\right)x=2\left(ax+1\right)\)
2/ \(a^2x=a\left(x+b\right)-b\)
Giải và biện luận phương trình sau:
1. ax2 - ab = b2(x - 1)
2. a(ax + b) = b2(x - 1)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)