Tìm các số nguyên tố p, q sao cho tồn tại số nguyên dương m thỏa mãn pq/(p+q)= (m2+6)/(m+1)
tìm tất cả các số nguyên tố p,q sao cho tồn tại số tự nhiên m thỏa mãn: \(\frac{pq}{p+q}=\frac{m^2+1}{m+1}\)
tìm một số nguyên tố p và q sao cho tồn tại số nguyên dương n thỏa mãn điều kiện: 1/p-1/q=9/n
giúp mik với ạ , mik cần gấp
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
tìm các số nguyên dương a;b;c;d thỏa mãn a+2b+3c=3d!+1.biết tồn tại các số nguyên tố p;q thỏa mãn a=(p+1)(2p+1)=(q+1)(q-1)2
Chứng minh rằng với mọi số nguyên tố p>2 đề không tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
C/M rằng với mọi số nguyên tố lẻ p đều ko tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
Vì p là số nguyên tố lẻ nên p>1.ĐKXĐ m,n khác 0.
Ta có: \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\Leftrightarrow\)\(\frac{1}{p}=\left(\frac{m^2+n^2}{m^2n^2}\right)\Leftrightarrow\)\(\left(m^2+n^2\right)p=m^2n^2\) \(\left(1\right)\)
\(\Leftrightarrow m^2n^2-m^2p-n^2p+p^2=p^2\Leftrightarrow\left(m^2-p\right)\left(n^2-p\right)=p^2\) \(\left(2\right)\)
Từ (1) ta được m hoặc n chia hết p.Giả sử m chia hết cho p. Đặt m2=a2p2 ( a khác 0) nên (2) \(\Leftrightarrow\) \(\left(a^2p^2-p\right)\left(n^2-p\right)=p^2\)
\(\Leftrightarrow\left(a^2p-1\right)\left(n^2-p\right)=p\)
Vì a khác 0 nên a2>0 a2p chia hết p . Vì p>2 nên a2p-1 không chia hết cho p.
Vậy n2-p chia hết cho p nên n chia hết cho p . Đặt n=bp.
Dựa pt đầu ta có \(\frac{1}{p}=\frac{1}{a^2p^2}+\frac{1}{b^2p^2}\Leftrightarrow1=\frac{1}{a^2p}+\frac{1}{b^2p}\)
nên a2p=2 và b2p=2 nên vô lý
tìm tất cả các số nguyên tó p q sao cho tồn tại số tự nhiên m thỏa mãn
qp/(p+q)=(m^2+1)(m+1)
Link:
Tìm tất cả các số nguyên tố $p; q$ sao cho $\frac{pq}{p+q}=\frac{m^2+1}{m+1}$ - Số học - Diễn đàn Toán học
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42