tính hợp lý
M = 1999(2000²+2001) - 2001(2000²-1999)
so sánh 1999/2000 + 2000/2001 và 1999+2000/2000+2001
So sánh: A=1999/2000+2000/2001 và B=1999+2000/2000+2001
\(B=\frac{1999+2000}{2000+2001}\)
\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Vì \(\frac{1999}{2000+2001}< \frac{1999}{2000}\) ; \(\frac{2000}{2000+2001}< \frac{2000}{2001}\)
\(\Rightarrow\)\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)< \(A=\frac{1999}{2000}+\frac{2000}{2001}\)
\(\Rightarrow\)B < A
Vậy B < A
so sánh 1999*2000/1999*2000+1 và 2000*2001/2000*2001+1
vì 2 phan số = 1 nên khi cộng với 1 thì = 2 mà 2= 2 nên 2 phân số bằng nhau
tính nhanh
2001*2000-2/1999+1999*2001
So sánh 1999×2000/1999×2000+1 & 2000×2001/2000×2001
< đó bn
cái đầu thì mẫu hơn tử 1 => cái đầu < 1
cái 2 tử mẫu = nhau => =1
====> cái đầu< cái 2 (nhìn tưởng phức tạp )
đúng nha mk pải off đây
So sánh 1999×2000 / 1999×2000+1 và 2000×2001 / 2000×2001 + 1
so sanh phân số: 1999*2000/1999*2000+1 và 2000*2001/2000*2001+1
\(A=\frac{1999}{2000}+\frac{2000}{2001}vàB=\frac{1999+2000}{2000+2001}\)
Ta có :
\(B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
VẬY \(\frac{1999}{2000}>\frac{1999}{2000+2001}\)
\(\frac{2000}{2001}>\frac{2000}{2000+2001}\)
\(\Rightarrow\frac{1999}{2000}+\frac{2000}{2001}>\frac{1999+2000}{2000+2001}\)
\(\Rightarrow A>B\)
CHÚC BN HỌC TỐT #
\(B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Ta có: \(\frac{1999}{2000}>\frac{1999}{2000+2001}\)
\(\frac{2000}{2001}>\frac{2000}{2000+2001}\)
\(\Rightarrow A>B\)
\(A=\frac{1999}{2000}+\frac{2000}{2001}v\text{à}B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
\(V\text{ì}\frac{1999}{2000}>\frac{1999}{2000+2001};\frac{2000}{2001}>\frac{2000}{2000+2001}\)
Từ đó suy ra A>B
tính A=2000(2001^1999+2001^1998+...+2001^2+2002)+1