Cho hình vẽ biết AB song song với DE. Ve đường thẳng xy đi qua điểm C và song song với AB. a) chung minh xy song song với DE.
b) tinh góc BCD
Chọn các câu khẳng định đúng:
a) Qua điểm A nằm ngoài đường thẳng xy, có một đường thẳng song song với xy.
b) Qua điểm A nằm ngoài đường thằng xy, có duy nhất một đường thẳng song song với xy.
c) Qua điểm A nằm ngoài đường thẳng xy, có vô số đường thẳng song song với xy.
d) Nếu hai đường thẳng AB và AC cùng song song với đường thẳng m thì hai đường thẳng AB và AC trùng nhau.
e) Nếu qua điểm A có hai đường thẳng cùng song song với đường thẳng d thì hai đường thẳng đó song song với nhau
Chọn các câu khẳng định đúng:
a) Qua điểm A nằm ngoài đường thẳng xy, có một đường thẳng song song với xy.
b) Qua điểm A nằm ngoài đường thằng xy, có duy nhất một đường thẳng song song với xy.
c) Qua điểm A nằm ngoài đường thẳng xy, có vô số đường thẳng song song với xy.
d) Nếu hai đường thẳng AB và AC cùng song song với đường thẳng m thì hai đường thẳng AB và AC trùng nhau.
e) Nếu qua điểm A có hai đường thẳng cùng song song vói đường thẳng d thì hai đường thẳng đó song song với nhau
Cho \(\Delta ABC\) , đường thẳng xy đi qua A song song với BC . Từ 1 điểm M trên BC , vẽ các đường thẳng song song với AB và AC cắt xy theo thứ tự tại D và E .
Chứng minh rằng :
a) \(\Delta ABC=\Delta MOE\)
b) ba đường thẳng AM , BD , CE cùng đi qua 1 điểm
Bài 1: cho hình vẽ biết AB// DE, \(\widehat{B}=115^o;\widehat{D}=135^o\) .Vẽ đường thẳng xy đi qua C và song song với AB.
a) chứng minh xy//DE
b) Tính số đo \(\widehat{BCD}\)
cho hình vẽ nào cơ
bạn phải đăng lên chứ
Cho ABC qua A vẽ đường thưởng xy song song với BC. Từ M trên BC vẽ cac1 đường song song AB, AC cắt xy theo thứ tự D,E. Chứng minh 3 đường thẳng AM, BD, CE đùng đi qua 1 điểm.
Cô hướng dẫn: Do MC .. EA; AC //EM nên EACM là hình bình hành. Từ đó suy ra \(\Delta EAI=\Delta CMI\left(g-c-g\right)\)
Hay EC cắt AM tại trung điểm I của AM.
Tương tự BD cũng cắt AM tại trung điểm I của AM nên ba đường thẳng trên đồng quy.
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
Cho tam giác ABC, qua A vẽ đường thẳng xy song song với BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC. Chứng giao với xy làm lượt tại D và E. Chứng minh rằng:
a) Tam giác ABC = Tam giác MDE
b) AM, BD, CE cùng đi qua một điểm
anh đã có bài giải của câu này chưa _ Đăng giúp em với
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
Cho tam giác ABC, qua A vẽ đường thẳng xy song song với BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC. Chứng giao với xy làm lượt tại D và E. Chứng minh rằng:
a) Tam giác ABC = Tam giác MDE
b) AM, BD, CE cùng đi qua một điểm
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
Câu 1. Chọn câu phát biểu đúng?
A. Qua điểm A nằm ngoài đường thẳng xy , có ít nhất một đường thẳng song song với xy .
B. Qua điểm A nằm ngoài đường thẳng xy , có vô số đường thẳng song song với xy .
C. Nếu hai đường thẳng AB và AC cùng song song với đường thẳng m thì hai đường thẳng AB và AC trùng nhau.
D. Nếu qua điểm A có hai đường thẳng cùng song song với đường thẳng d thì hai đường thẳng đó song song với nhau.