Cho A = x^2 × y^2 , B = xy^2x , C = xyz^2 và x+y+z=1
Rút gọn A + B + C
Rút gọn
a, x4 +x3+x2+x-4/x-1
b, xyz+xy+yz+xz+x+y+z+1/(x+1)(y+1)
c, az+by+bx+ay/a+b
Cho: A= x2yz ; B= xy2z ; C= xyz2 và x + y + z = 1. CMR: A + B + C = xyz
\(Ta\) \(có:\)
\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz.1=xyz\)
cho a,b,c và x,y,z thỏa ax+by+cz=0. rút gọn A=bc(y-z)^2+ca(z-x)^2+ab(x-y)^2/a^2x^2+b^2y^2+c^2+z^2
Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)
=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)
Thay (2) vào (1) ta được:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)
Rút gọn biểu thức sau
(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2
2.Tính
a)(2+xy)^2
b) (5-3x)^2
c) (5-x^2)(5+x^2)
d) (5x-1)^3
e) (2x-y)(4x^2+2xy+y^2)
3.Rút gọn các biểu thức sau:
a) (a+b)^2 -(a-b)^2
b) (a+b)^3 -(a-b)^3-2b^3
c) (x+y+z)^2 -2(x+y+z)(x+y)+(x+y)^2
P/s:giúp mình giải nhé!!! giải theo 7 hằng đẳng thức đáng nhớ.
Bài 1:
a,(2+xy)^2=4+4xy+x^2y^2b,(5-3x)^2=25-30x+9x^2d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1Cho : A=x2yz , B=xy2z , C=xyz2 và x+y+z=1 . Hãy chứng minh : A+B+C=xyz
Bài 1: Rút gọn biểu thức
a)(x^2 - 2xy + y^2).(x-y)-(x-y).(x^2 + xy + y^2)
b) 7x.( 4y-x) + 4y.(y-7x)-(4y^2 -7x)
c) (2x+y). (2x+y) +(x-y).(y-z)
a,
\(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left[\left(x^2-2xy+y^2\right)\left(x-y\right)\right]-\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\)
\(=\left[\left(x-y\right)^2\left(x-y\right)\right]-\left(x-y\right)^3\)
\(=\left(x-y\right)^3-\left(x-y\right)^3\)
\(=0\)
Cho A = x2yz
B = xy2z
C = xyz2
và x + y + z = 1 . CT A + B + C = xyz
Ta có :
\(A+B+C\)
\(=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)\)
\(=xyz.1\)
\(=xyz\left(đpcm\right)\)
ta có: A + B + C = x2yz +xy2z + xyz2 = xyz.(x+y+z) = xyz.1=xyz
=> A+B+C = xyz
#
Câu 1 : Cho hai đa thức:
A(x)=6x-4x³ +x-1 và B(x)=-3x-2x³-5x2+x+2. Tính A(x)+B(x) và A(x)−B(x)
Câu 2 : Cho: A = x’yz ; B = xyz ; C = xyz và x+y+z=1 Hãy chứng tỏ: A+B+C =xyz
Câu 1:
\(A\left(x\right)+B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)+\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(6x+-3x+x\right)-\left(4x^3+2x^3\right)-5x^2+\left(-1+2\right)\)
\(=-6x^3-5x^2+4x+1\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)-\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(-4x^3+2x^3\right)+5x^2+\left(6x+x-x\right)+\left(-1-2\right)\)
\(=-2x^3+5x^2+6x-3\)
1) Cho các đơn thức:
A=x2y
B=xy2
Chứng minh: Nếu x+y chia hết cho 13 thì A+B chia hết cho 13
2) Cho A= x2yz; B=xy2z; C=xyz2 và x+y+z=1
Chứng minh: A+B+C=x+y+z
BÀI 1:
\(A+B=x^2y+xy^2\)
\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)
Vì \(x+y\)\(⋮\)\(13\)
nên \(xy\left(x+y\right)\)\(⋮\)\(13\)
Vậy \(A+B\)\(⋮\)\(13\) nếu \(x+y\)\(⋮\)\(13\)