Chung minh
a.(2x+y)2<5(x2+y2)
b.x(x+1)<(x+1)2
c.(a-b)2< hoac = a2+b2
chung minh rang
a) (1-2x)(x-1)-5<0
b) -x^2-y^2+2x+2y-3<0
a) ta có : \(\left(1-2x\right)\left(x-1\right)-5=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6=-\left(2x^2-3x+6\right)=-\left(\left(\sqrt{2}x\right)^2-2.\sqrt{2}.\dfrac{3}{2\sqrt{2}}x+\left(\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)\)
\(=-\left(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)
ta có : \(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) với mọi \(x\)
\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}< 0\) với mọi \(x\)
vậy \(\left(1-2x\right)\left(x-1\right)-5< 0\) (đpcm)
b) ta có : \(-x^2-y^2+2x+2y-3\)
\(=\left(-x^2+2x-1\right)+\left(-y^2+2y-1\right)-1\)
\(=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1=-\left(x-1\right)^2-\left(y-1\right)^2-1\)
ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge\forall x\\\left(y-1\right)^2\ge\forall y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\left(x-1\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\)
\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2\le0\) với mọi \(x;y\)
\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1\le-1< 0\) với mọi \(x;y\)
vậy \(-x^2-y^2+2x+2y-3< 0\) (đpcm)
\(a,A=\left(1-2x\right)\left(x-1\right)-5\)
\(=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6\)
\(=-\left(2x^2-3x+\dfrac{9}{8}\right)-\dfrac{39}{8}\)
\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\dfrac{3}{2\sqrt{2}}+\left(\dfrac{3}{2\sqrt{2}}\right)^2\right]-\dfrac{39}{8}\)
\(=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)
Ta có :
\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le-\dfrac{39}{8}\)
Hay A \(\le-\dfrac{39}{8}\)
Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2=0\)
\(\Leftrightarrow\sqrt{2}x-\dfrac{3}{2\sqrt{2}}=0\) \(\Leftrightarrow\sqrt{2}x=\dfrac{3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{3}{2\sqrt{2}}:\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
Vậy \(Min_A=-\dfrac{39}{8}\Leftrightarrow x=\dfrac{3}{4}\)
a) ( 1 - 2x ).( x - 1) -5
= x - 1 - 2x2 + 2x -5
= x - 1 - x2 - x2 + 2x -\(\dfrac{1}{4}+\dfrac{19}{4}\)
= - ( x2 - 2x +1) - [x2 - 2.\(\dfrac{1}{2}\)x + ( \(\dfrac{1}{2}\))2 ] + \(\dfrac{19}{4}\)
= -( x - 1)2 -( x - \(\dfrac{1}{2}\))2 + \(\dfrac{19}{4}\)
Do : -( x - 1)2 =< 0 ; -( x - \(\dfrac{1}{2}\))2 =< 0
--> ( 1 - 2x ).( x - 1) -5 =< -5 < 0 ( ĐPCM)
b) - x2 - y2 + 2x + 2y -3
= - x2 + 2x - 1 - y2 + 2y -1 -1
= - ( x2 - 2x +1) -( y2 - 2y + 1) -1
= -( x - 1)2 - ( y - 1)2 - 1
Do : -( x - 1)2 nhỏ hơn hoặc bằng 0
- ( y - 1)2 nhỏ hơn hoặc bằng 0
--> - x2 - y2 + 2x + 2y -3 =< -5 < 0 ( đpcm)
P/s : Chỗ =< là nhỏ hơn hoặc bằng nhé
chung minh 2x^2+2xy+4x+y^2+8>0 voi moi x,y
Ta có:\(2x^2+2xy+4x+y^2+8\)
\(=x^2+4x+4+x^2+2xy+y^2+4\)
\(=\left(x+2\right)^2+\left(x+y\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)
Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y
2x^2+2xy+4x+y^2+8
= x^2+2xy+y^2 +x^2 + 4x+4+4
=(x+y)^2 + (x+2)^2 +4
Vì (x+y)^2 và (x+2)^2 đều >=0
Nên (x+y)^2+(x+2)^2+4 >= 4 >0
Vậy.........n.n
biet (x+y+2)(xy+2x+2y)=2xy Chung minh rang (x+y+2)^2015=x^2015+y^2015+2^2015
Chung minh dang thuc:
A)(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2) = 2x^3
B)x^3-y^3=(x-y)((x-y)^2-xy)
\(A,VT=x^3+y^3+x^3-y^3=2x^3=VP\\ B,VT=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2+2xy+y^2-xy\right)\\ =\left(x-y\right)\left[\left(x+y\right)^2-xy\right]=VP\)
Sửa câu b \(cm:x^3-y^3=\left(x-y\right)\left[\left(x+y\right)^2-xy\right]\)
cho x+y+z=0 chung minh rang:
2x^4+2y^4+2z^4=(x^2+y^2+z^2)^2
Chung minh bieu thuc ko fu thuoc vao bien x,y
A=(3x-5)(2x+11)-(2x-3)(3x+7)
A=6x2+33x-10x-55-(6x2+14x-9x-21)=6x2+23x-55-6x2-5x+21=18x-34
Vậy A có phụ thuộc vào biến x => đề sai cmnr
cho a=x 3y, b=x 2y 2, c=xy 3 .Chung minh rang voi moi so huu ti x va y ta luon duoc ax+b 2-2x 4y 4=0
chung minh ham so y=f(x)=x^2-2x+5 nghich bien voi x>1
ta có a=1>0:\(\frac{-b}{2a}=1\);\(\frac{-\Delta}{4a}=2\)
do a>0 nên hs ngịch biến(-∞:1) đồng biến (1;+∞)
mà x>1 nên hs đồng biến
đề có j đó sai sai
Chung minh rang x2+5xy+2x-4xy-10y+14 >0 voi moi x,y
Bạn hãy viết lại đề bài đi mình trông ngộ ngộ kiểu j đấy