Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mai Anh
Xem chi tiết
Hi Hi
Xem chi tiết
Hi Hi
Xem chi tiết
Xem chi tiết
Hoàng Thiện Nhân
19 tháng 12 2018 lúc 10:17

do la 11va13

Vì là tổng của 2 số nguyên tố ra số nguyên tố nên tổng phải là số lẻ

Mà lẻ + lẻ = chẳn nên phải có 1 số chẳn

Vậy 1 số là 2

Số còn lại sẽ là số bé nhất có thể

Nếu là 3 thì hiệu sẽ không phải là số nguyên tố

Vậy là số 5

Suy ra 2 SNT đó là 2 và 5

Nếu là số 3 thì 

Vũ Thị Ngân Hà
Xem chi tiết
Onmile Cao Thành
Xem chi tiết
nguyen thi minh xuan
19 tháng 7 2018 lúc 13:19

 Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có:

p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).

Hok tot

White Ways
19 tháng 7 2018 lúc 13:23

                                                                          Giải

. p + (p+2) = 2p + 2 = 2.(p+1)

. p là SNT > 3 \(\Rightarrow\)\(lẻ\Rightarrow p+1\)chẵn

\(\Rightarrow\left(p+1\right)⋮2\)                             1 )

Trong 3 STN liên tiếp : p;p+1;p+2 có 1 số \(⋮3\)

Vì p;p+2 là 2 SNT > 6 nên p không\(⋮3\); p+ 2 ko \(⋮\)3

\(\Rightarrow\left(p+1\right)⋮3\)                                     2 )

\(\Rightarrow2\left(p+1\right)⋮12\)

Vậy ..............

Nguyen Linh Nhi
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Đinh Tuấn Việt
28 tháng 6 2016 lúc 20:09

undefined

Lê Minh Đức
28 tháng 6 2016 lúc 22:26

b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

Nguyễn Huy Tú
Xem chi tiết