CMR vs mọi SNT>3 có hiệu = 2 thì tổng của chúng là bội của 12
Chứng minh nếu 2 số nguyên tố lơn hơn 3 có hiệu bằng 2 thì tổng của chúng là bội của 12
chứng minh rằng 2 số nguyên tố>2 có hiệu là 2 thì tổng của chúng là bội của chúng là 12
chứng minh rằng 2 số nguyên tố lớn hơn 3 ,hiệu là 2 thì tổng của chúng là bội của 12
Tìm hai số nguyên tố(SNT) , biết hiệu của chúng là SNT , tổng của chúng cũng là SNT
Vì là tổng của 2 số nguyên tố ra số nguyên tố nên tổng phải là số lẻ
Mà lẻ + lẻ = chẳn nên phải có 1 số chẳn
Vậy 1 số là 2
Số còn lại sẽ là số bé nhất có thể
Nếu là 3 thì hiệu sẽ không phải là số nguyên tố
Vậy là số 5
Suy ra 2 SNT đó là 2 và 5
Nếu là số 3 thì
Câu 1: So sánh 2^3^2^3 với 3^2^3^2
Câu 2: cmr: vs mọi n là stn và n>1 thì 5^2^n + 2 có chữ số tận cùng là 7
Câu 3: tìm n là số nguyên sao cho n^2 + n - 17 là bội của bội của n+5
Câu 4: cmr: hiệu các bình phương của 2 số lẻ liên tiếp thì chia hết cho 8
Chứng Minh Rằng : nếu p và p + 2 là 2 SNT lớn hơn 3 thì tổng của chúng \(⋮\)cho 12.
Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có:
p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).
Hok tot
Giải
. p + (p+2) = 2p + 2 = 2.(p+1)
. p là SNT > 3 \(\Rightarrow\)\(lẻ\Rightarrow p+1\)chẵn
\(\Rightarrow\left(p+1\right)⋮2\) ( 1 )
- Trong 3 STN liên tiếp : p;p+1;p+2 có 1 số \(⋮3\)
Vì p;p+2 là 2 SNT > 6 nên p không\(⋮3\); p+ 2 ko \(⋮\)3
\(\Rightarrow\left(p+1\right)⋮3\) ( 2 )
\(\Rightarrow2\left(p+1\right)⋮12\)
Vậy ..............
Bài 1 : Tìm các số nguyên a , b biết tích của chúng là 24 và tổng của 2 số đó là - 40
Bài 2 : CMR với mọi số nguyên a ta có ( a - 1 ) * ( a + 2 ) +12 không chia hết cho 9 và không là bội của 9
Bài 3 : Cho dãy a1 ; a2 ; a3 ; ... ; a160 . Trong đó a1 = 1 ; a2 = -1 ; ak = ak - 2 * ak - 1 ( K thuộc số tự nhiên ; K nhỏ hơn hoặc bằng 3 ) . Tính a100
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích?
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12