Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
võ dương thu hà
Xem chi tiết
Dương Hồng Bảo Phúc
Xem chi tiết
Nguyễn Thị Thương Hoài
13 tháng 11 2023 lúc 14:53

1.A = 21 + 22 + 23 + 24 + ... + 259 + 260

Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.

vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:

A = (21 + 22) + (23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)

A =2.3 + 23.3  + ... + 259.3

A =3.( 2 + 23+...+ 259)

Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)

 

 

 

sdjo
13 tháng 11 2023 lúc 14:01

áp dụng công thức là ra :))))

Nguyễn Thị Thương Hoài
13 tháng 11 2023 lúc 14:26

2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6

   M = 3n+1.(32 + 1) + 2n+2.(2 + 1) 

    M = 3n.3.(9 + 1) + 2n+1.2 . 3

    M = 3n.30 + 2n+1.6

   M = 6.(3n.5 + 2n+1)

   Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)

👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
16 tháng 3 2019 lúc 11:52

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

Lê Tự Phong
Xem chi tiết
๖²⁴ ɭo√є⁀ᶦᵈᵒᶫ
Xem chi tiết
Nhật Hạ
16 tháng 8 2019 lúc 17:11

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)\(\frac{1}{3^2}< \frac{1}{2.3}\); .... ; \(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n-1}\)

\(\Rightarrow B< 1-\frac{1}{n-1}< 1\)

=> B < 1 (đpcm)

Đinh Thị Ngọc Anh
Xem chi tiết
Phạm Trịnh Phương Thảo
Xem chi tiết
Nguyen Linh Nhi
Xem chi tiết
Trần Việt Anh
14 tháng 11 2018 lúc 19:59

1)A=987

No name
Xem chi tiết
Bò Vinamilk 3 không (Hộ...
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

phan thanh ngan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2020 lúc 12:51

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

phan thanh ngan
30 tháng 8 2020 lúc 12:00
https://i.imgur.com/VAewh4D.jpg
phan thanh ngan
31 tháng 8 2020 lúc 11:56

Giúp mik vs ạ.Mik đag cần