Cho tam giác đều ABC, trên BC lấy điểm D . Từ D kẻ các đường thẳng song song với AC và AB chúng cắt AB và AC ở E và F. Gọi H và I lần lượt là trung điểm của BF và CE.C/minh:
a, \(\Delta BDF=\Delta EDC\)
b, \(\Delta DHI\) là tam giác đều.
Cho tam giác đều ABC, trên BC lấy điểm D . Từ D kẻ các đường thẳng song song với AC và AB chúng cắt AB và AC ở E và F. Gọi H và I lần lượt là trung điểm của BF và CE.C/minh:
a, \(\Delta BDF=\Delta EDC\)
b, \(\Delta DHI\) là tam giác đều.
Cho tam giác đều AVC,trên BC lấy điểm D.Từ D kẻ các đường thẳng song song với AC và AB chúng cắt AB vaf AC ở E và F.Gọi H và I lần lượt là trung điểm của BF và CE.Chứng minh:
a,tgBDF=tgEDC
b,tgDHI là tam giác đều
Cho tam giác đều ABC,trên BCD lấy điểm D.Từ D kẻ các đường thẳng song song với AC và AB chúng cắt nhau AB và AC ở E và F.Gọi H và I lần lượt là trung điểm của BF và CE.Chứng minh:
a,tgBDF=tgEDC
b,tgDHI là tg đều
Cho tam giác đều ABC , trên cạnh BC lấy M bất kì. Từ M kẻ đường thẳng song song với AC và AB cắt AB và AC lần lượt tại E và F.
a)C/m: BF=CE.
b)Gọi I và K là trung điểm của BF và CE . C/m : tam giác MIF= tam giác MKC và tam giác MIK đều
Cho tam giác ABC. Từ một điểm E trên cạnh AC, kẻ các đường thẳng lần lượt song song với AB, BC cắt BC và AB theo thứ tự ở D và F. Biết AE=BF. Chứng minh AD là phân giác của tam giác ABC.
Cho tam giác nhọn ABC. Lấy E, D lần lượt là trung điểm của AB,AC. Gọi giao điểm của BD, CE là O
1. Chứng minh ED//BC và OC.OD=OB.OE
2. Trên cạnh BC lấy điểm H tùy ý(H khác B và C) từ H kẻ đường thẳng thứ nhất song song với CE và cắt AB tại M, cắt OB ở F và đường thẳng thứ hai song song BD cắt AC tại Q và OC tại K .Nối MQ cắt OB, OC lần lượt tại N và P
a) Chứng minh CK/CO+BF/B0=1
b. Chứng minh SMFP=SKQN
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC với BF. Đường thẳng qua H song song với AB cắt BC tại I. Chứng minh rằng:
a. DA/DB = ED/FE
b. HA.HE = HC2
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
câu b) bạn cố tình kẻ EI//BC hay sao vậy nhỉ?
Xét tam giác EHF có:
EF//BC (gt)
=>\(\dfrac{HC}{HE}=\dfrac{HB}{HF}\)(định lý Ta-let) (3)
Xét tam giác BCF có:
HI//FC (HI//AB và FC//AB)
\(\dfrac{HB}{HF}=\dfrac{BI}{IC}\)(định lý Ta-let) (4)
Xét tam giác ABC có:
HI//AB (gt)
=>\(\dfrac{BI}{IC}=\dfrac{AH}{HC}\)(định lí Ta-let) (5)
Từ (3),(4),(5) suy ra: \(\dfrac{HC}{HE}=\dfrac{HA}{HC}\)
=>HE.HA=HC2
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
chắc sang năm mới làm xong mất
sang năm mk giúp bn na