Lời giải:
a) Tam giác $ABC$ đều nên \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Ta có: \(DE\parallel AC\Rightarrow \widehat{BDE}=\widehat{BCA}=60^0\). Kết hợp với \(\widehat{EBD}=\widehat{ABC}=60^0\) suy ra tam giác $EBD$ đều
\(\Rightarrow DE=DB\)
Tương tự $DFC$ cũng là tam giác đều \(\Rightarrow DF=DC\)
Do đó \(\frac{BD}{ED}=\frac{DF}{DC}=1\)
\(\widehat{BDF}=180^0-\widehat{FDC}=180^0-60^0=120^0\)
\(\widehat{EDC}=180^0-\widehat{EDB}=180^0-60^0=120^0\)
\(\Rightarrow \widehat{BDF}=\widehat{EDC}\)
Xét tam giác BDF và EDC có: \(\left\{\begin{matrix} \widehat{BDF}=\widehat{EDC}(\text{cmt})\\ \frac{BD}{ED}=\frac{DF}{DC}\end{matrix}\right.\) \(\Rightarrow \triangle BDF=\triangle EDC\) (c.g.c)
b) Vì \(\triangle BDF\sim \triangle EDC\Rightarrow \left\{\begin{matrix} \widehat{DBF}=\widehat{DEC}\Leftrightarrow \widehat{DBH}=\widehat{DEI}\\ \frac{BD}{ED}=\frac{BF}{EC}=\frac{2BH}{2EI}=\frac{BH}{EI}\end{matrix}\right.\)
Từ hai điều này suy ra \(\triangle BDH\sim \triangle EDI(c.g.c)\)
\(\Rightarrow \frac{DH}{DI}=\frac{BD}{ED}=1\)\(\Rightarrow DH=DI(1)\) và \(\widehat{BDH}=\widehat{EDI}\Leftrightarrow \widehat{BDE}+\widehat{EDH}=\widehat{EDH}+\widehat{HDI}\)
\(\Rightarrow \widehat{BDE}=\widehat{HDI}\Leftrightarrow \widehat{HDI}=60^0(2)\)
Từ (1); (2) suy ra tam giác DHI đều .