Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Nguyễn Bá Thọ
Xem chi tiết
Bao Than Đen
Xem chi tiết
Song Thư
3 tháng 12 2017 lúc 19:59

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(A=5^n\left(5^2+26\right)+\left(8^2\right)^n.8\)

\(A=5^n.51+64^n.8\)

\(A=5^n.59-5^n.8+64^n.8\)

\(A=5^n.59+8.\left(-5^n+64^n\right)\)

Ta có: \(\left(5^n.59\right)⋮59\left(1\right)\)

\(\left(-5^n+64^n\right)\) luôn chia hết cho \(\left(-5+64\right)=59\Leftrightarrow8.\left(-5^n+64^n\right)⋮59\left(2\right)\)

Từ (1)(2)⇒ A\(⋮\)59

Nguyễn Thị Thùy
Xem chi tiết
Hoàng Phúc
6 tháng 8 2016 lúc 22:10

a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc

Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)

\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)

\(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133

Mà 11n.133 cũng chia hết cho 133

=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)

b,\(5^{n+2}+26.5^n+8^{2n+1}\)

\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)

\(=59.5^n+8.\left(64^n-5^n\right)\)

\(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59

Mà 59.5n cũng chia hết cho 59

=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)

lê duy mạnh
8 tháng 10 2019 lúc 20:31

a,sai nha bn

Quay Cuồng
Xem chi tiết
Le Van Hung
Xem chi tiết
Nhok_baobinh
12 tháng 2 2018 lúc 16:55

\(A=5^{n+2}+26.5^n+8^{2n+1}\left(n\in N\right)\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8\left(64-5\right)\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59.5^n+8.59\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59\left[5^n+8\left(64^{n-1}+64^{n-2}.5+...\right)\right]⋮59\)

Vậy \(A⋮59\)\(\forall n\in N\)(đpcm)

Trần Ngọc Thanh Tuyết
Xem chi tiết
Akai Haruma
30 tháng 1 2017 lúc 17:48

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

Trần Ngọc Thanh Tuyết
30 tháng 1 2017 lúc 17:40

Nguyễn Huy TúAkai Haruma

Trần Hoàng Đăng
30 tháng 1 2017 lúc 18:35

6 nha

LIVERPOOL
Xem chi tiết
Nguyễn Duy Long
11 tháng 10 2017 lúc 22:02

khó thế

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 12 2021 lúc 17:02

\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)

\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)

\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)

\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)