bài 1: 32các số sau
A,714và57
B,32nvà23n(n thuộc n*)
B,6255và1257
C,921và535
giúp mk với nhanh nha.( câu nào cũg đc_gâp
Bài 1 :CMR : a, (a-b)+(c-d)-(a-c)=-(b+d)
b (a-b)-(c-d)+(b+c)=a+d
Bài 2 : CMR 2n + 1 và 2n + 3 ( n thuộc N ) là số nguyên tố cùng nhau
giúp mk nha mk cần rất gấp ai nhanh nhất và đúng mk sẽ cho 3 tick nhanh nha
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
các pn có thể giúp mk vài bài này ko , dc thì tố quá , ha . Giờ mk đăng câu hỏi lên ... nha
Bài 1 : Cho a + b =1 . Tính S biết S = -(-a+b-c) + (-c-b-a) - (a-b)
Bài 2 : Chứng minh đẳng thức sau :
-(-a+b+c) + (-c+b-1) = (b-c+6) - (7-a+b) + c
Bài 3 : Cho a + b =1 , tính |S| biết : S=-(-a-b-c) + (-c+b+a) - (a+b)
Bài 4: Cho M = a +b -1 và N = b+c-1 . Biết M> N , hỏi hiệu a-c dương hay âm
GIÚP MK ĐI , PLEASE , AI NHANH VÀ ĐÚNG MK TIK CHO 6 TIK ( TIK 2 NGÀY NHA ! ) THANKS !
Bài 3 : Cho a . b , tính |S| biết : S=-(-a-b-c) + (-c+b+a) - (a+b)
Đề sai ,ko bao giờ đề cho a.b vì chỉ có cộng trừ thôi .Nên đề phải là a>b
Ta có: S=-(-a-b-c) + (-c+b+a) - (a+b)
S= -a+b+c-c+b+a-a-b
S= (-a+a-a)+(b+b-b)+(c-c)
S=-a+b+0
S=b-a
Mà \(a>b\Rightarrow b-a< 0\)
\(\Leftrightarrow\left|S\right|=\left|b-a\right|=a-b\)
Vậy |S|=|b-a|=a-b
mk dag cần pài 4 , pn nào giải dc pài 4 mk cho ha
cho A=8+12+x+16+18(x thuộc N).tìm điều kiện của x để: a,A chia hết cho 4 b,A kho chia hết cho 4 bài 2: cho B=8+12+9+m+12+n+1(m,n thuộc N) tìm điều kiện của m,n để: B chia hết cho 3,B kho chia hết cho 3 bài 3:hiệu sau chia hết cho những số nào trong các số 3;5;7;9 A=3x5x7x9x...x11-60
AI làm nhanh mk tik cho nha
Trong các câu sau câu nào cho ta 3 số tự nhiên liên tiếp tăng dần
a+1,a+2 với a thuộc N
b+2,b+1 với b thuộc N
c-1,c+2 với c thuộc N
d+1,d-1 với d thuộc N
Với n thuộc Z các số sau là chẵn hay lẻ:
A=(n-4)(n-15)
B=n^2-n-1
Giải chi tiết hộ mk nha ai làm nhanh nhất mk tích cho 3 ****
A = ( n - 4 ) ( n - 15 )
Do 4 và 15 không cùng là số chẵn mà cũng không cùng số lẻ nên n bằng bao nhiêu thì kết quả của n - 4 và n - 15 vẫn như vậy.
Mà chẵn * lẻ hay lẻ * chẵn đều bằng chẵn nên A là số chẵn.
A = ( n - 4 ) ( n - 15 )
Do 4 và 15 không cùng là số chẵn mà cũng không cùng số lẻ nên n bằng bao nhiêu thì kết quả của n - 4 và n - 15 vẫn như vậy.
Mà chẵn * lẻ hay lẻ * chẵn đều bằng chẵn nên A là số chẵn.
B = n2 - n - 1 = n ( n - 1 ) - 1
Do n và n - 1 là 2 số tự nhiên liền tiếp ( 1 số chẵn, 1 số lẻ ) nên kết quả của n2 - n là số chẵn. Nhưng 1 là số lẻ mà chẵn - lẻ = lẻ nên B là số lẻ.
giúp mk bài này nha^^:
cho A = n-3/n+7
a) tìm n để A là phân số
b) tìm n thuộc Z để A có giá trị nguyên
c) tìm n thuộc Z để A ko có giá trị nguyên
klq: giúp mk giải đầy đủ nha ^^
Bài 1 : Chứng minh các phân số sau tối giản ?
a) \(\frac{n}{n+1}\)( n thuộc N )
b) \(\frac{n+1}{2n+3}\)( n thuộc N )
c) \(\frac{21n+4}{14n+3}\)( n thuộc N )
d) \(\frac{2n+3}{3n+5}\)( n thuộc N )
Các bn giúp mk nha ! Mai mk phải nộp rồi. huhu
a) Gọi d là ƯCLN(n, n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n,n+1\right)=1\)
\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.
b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)
\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.
d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)
\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.
....Mai học hình, đâu phải học số??????
Giúp mk vs ạ!! Thứ 2 thi r, mong mn tl nhanh ạ
Bài 5: Cho đa thức A(x)=5.x^n+1 -2.x^n -3.x^n+1 +4.x^n-x^n+1 -x^n(n thuộc N*). Tìm nghiệm của đa thức A(x)
Bài 7: Tìm nghiệm của đa thức: a) x+5 b) x^2 - 2x
Bài 8:Cho 2 đa thức f(x)=-3.x^2+2.x+1 ; g(x)=-3.x^2-2+x . Với giá trị nào của x thì f(x)=g(x) ?
Bài 3:Tìm nghiệm chung của 2 đa thức:A(x)=x^4-1/2.x^3-3.x^2-8 ; B(x)=x^2+2x
Nếu ai biết câu nào thì mong trả lời câu đó nha^^
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Bài 1 :
\(A\left(x\right)=5x^{n+1}-2x^n-3x^{n+1}+4x^n-x^{n+1}\)
\(A\left(x\right)=\left(5x^{n+1}-3x^{n+1}-x^{n+1}\right)+\left(-2x^n+4x^n\right)\)
\(A\left(x\right)=x^{n+1}+2x^n\)
Ta có : \(A\left(x\right)=0\Leftrightarrow x^{n+1}+2x^n=0\)
\(\Leftrightarrow x^n\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^n=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy nghiệm của đa thức A(x) là x = 0; x = -2
Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
giúp mình giải bài này nha.thank(bn nào tl nhanh nhất mk sẽ tik cho nha)
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)
Tham khảo nhé~
Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)