Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thảo Hiền
Xem chi tiết
Zoro Roronoa
31 tháng 1 2016 lúc 19:45

10^n - 9n - 1 chia hết cho 27 (*) 

Sử dụng phương pháp quy nạp. 

- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27. 

- Giả sử (*) đúng với n = k (thuộc N*), tức là: 
10^k - 9k - 1 chia hết cho 27 

- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là: 
10^(k+1) - 9(k+1) - 1 chia hết cho 27. 

Thật vậy: 
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k 

10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27. 

81 chia hết cho 27, nên 81k chia hết cho 27. 

Vậy (*) đúng với mọi n thuộc N* (đpcm).

Devil Girl
Xem chi tiết
Devil Girl
Xem chi tiết
Trần anh đại
Xem chi tiết
Ben 10
13 tháng 9 2017 lúc 17:06

Nếu không bạn xem luộn dưới đây cũng được. 

10^n - 9n - 1 chia hết cho 27 (*) 

Sử dụng phương pháp quy nạp. 

- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27. 

- Giả sử (*) đúng với n = k (thuộc N*), tức là: 
10^k - 9k - 1 chia hết cho 27 

- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là: 
10^(k+1) - 9(k+1) - 1 chia hết cho 27. 

Thật vậy: 
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k 

10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27. 

81 chia hết cho 27, nên 81k chia hết cho 27. 

Vậy (*) đúng với mọi n thuộc N* (đpcm).

Vũ Thu Hiền
Xem chi tiết
Thi Chinh Dinh
Xem chi tiết
Bảo Châu Ngô
18 tháng 4 2016 lúc 17:59

. Mình dùng quy nạp nha bạn ^^  10n – 9n – 1 chia hết cho 27 (*)

. Đặt \(A=\)10n  - 9n -1 

. Với n = 0, ta có: A = 100-9.0-1=0 chia hết cho 27

. Giả sử với n=k \(\left(k\varepsilon N\right)\) thì mệnh đề (*) đúng, tức là 10k-9k-1 chia hết cho 27

. Với n=k+1, ta có: A=10(k+1)-9(k+1)-1 = 10k.10-9k-9-1 = 10k-9k-1 + 9.10k-10

. Ta thấy 10k-9k-1 chia hết cho 27(cmt) để A chia hết cho 27 thì ta cần cm 9.10k-10 chia hết cho 27

. Xét 9.10k-10, ta có: 9.10k-10 = 90(10k-1-1) = 90.(10-1).M ( M là 1 đa thức)

= 90.9.M chia hết cho 27  

. Vậy A chia hết cho 27 =))

Văn Minh Anh
Xem chi tiết
Khang1029
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:50

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 21:03

\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)

Theo PP quy nạp ta đc đpcm

Diệu Linh Trần Thị
Xem chi tiết
Lê Thành Vinh
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15