Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tường Nguyễn Thế
Xem chi tiết
๖Fly༉Donutღღ
25 tháng 2 2018 lúc 9:27

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có: 

a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1) 

* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0 

⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3) 

⇒ abc ≤ 2ab+2bc+2ca - 4 (2)

Dấu '=' khi có 1 số = 2 

thay (1) vào (2) ta có: 

a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3) 

Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4 

⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có 

a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm) 

Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua 

Yim Yim
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Nhật Giang
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Thắng Nguyễn
8 tháng 2 2017 lúc 21:33

Không mất tính tổng quát giả sử a lớn nhất trong các số a,b,c. Từ đó suy ra

\(3a\ge a+b+c=3\Leftrightarrow2\ge a\ge1\left(1\right)\)

Từ điều kiện \(0\le b,c\le a\le2\). ta có 

\(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\left(2\right)\)

Mà từ \(b,c\ge0\) và \(a+b+c=3\).Lưu ý rằng khi ta có \(1\le a\le2\) từ \(\left(1\right)\) ta có: \(\left(a-\frac{3}{2}\right)^3\le\frac{1}{4}\left(3\right)\).

Vậy \(a^3+b^3+c^3\le9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{9}{4}+\frac{27}{4}=9\)

Từ (2) và (3). Như vậy đã chứng minh xong

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=2\\b=1\\c=0\end{cases}}\)

Thắng Nguyễn
8 tháng 2 2017 lúc 22:41

Let \(a\ge b\ge c\)

Since \(f\left(x\right)=x^3\)is a convex function on  \(\left[0,3\right]\) and \(\left(2,1,0\right)›\left(a,b,c\right)\)

By Karamata's inequality we obtain 

\(9=2^3+1^3+0^2\ge a^3+b^3+c^3\)

Done!  :)))

P/s:viết tiếng anh giỏi quá =))

Thắng Nguyễn
9 tháng 2 2017 lúc 13:27

cái cách dưới cho mk sửa chút nhé 

cái dòng thứ 5 từ trên xuống, chỗ công thức mà mình đánh dấu là (3) đó sửa thành

\(\left(a-\frac{3}{2}\right)^2\le\frac{1}{4}\left(3\right)\) nhé !

vô va
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
25 tháng 7 2018 lúc 11:34

Theo hằng đẳng thức đáng nhớ ta có :

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca+abc\right)\left(1\right)\)

Ta lại có : \(0\le a,b,c\le2\Rightarrow\left\{{}\begin{matrix}abc\ge0\\\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow8-4a-4b-4c+2ab+2bc+2ca-abc\ge0\)

\(\Leftrightarrow2ab+2bc+2ca-4\ge abc\Leftrightarrow abc\le-4\) ( Vì \(a,b,c\ge0\) ) \(\left(2\right)\)

Thay (2) vào (1) ta được :

\(a^3+b^3+c^3\le3\left(a^2+b^2+c^2-ab-bc-ca-4\right)=3\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]=3\left(9-3\left(ab+bc+ca\right)\right)\)

Mà từ (2) ta lại có : \(2ab+2bc+2ca\ge abc+4=4\Rightarrow ab+bc+ca\ge2\Rightarrow-3\left(ab+bc+ca\right)\le-6\)

\(\Rightarrow a^3+b^3+c^3\le3\left(9-6\right)=9\)

Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị

Hàn Vũ
20 tháng 7 2019 lúc 20:50

Giả sử \(a=max\left\{a,b,c\right\}\)

Do đó \(3=a+b+c\le3a\)

\(\Rightarrow a\in\left[1;2\right]\)

Ta có: \(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9+\left(a-1\right)\left(a-2\right)\le9\)Vậy bài toán đã được chứng minh

Nguyễn Thị Thúy Ngân
Xem chi tiết
Lê Thị Thục Hiền
25 tháng 5 2021 lúc 17:06

Áp dụng BĐT cosi:

\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)

Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)

Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)

Alan
Xem chi tiết
 ☘ Nhạt ☘
Xem chi tiết
Trần Phúc Khang
13 tháng 11 2019 lúc 5:41

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)

Theo đề bài ta có

\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)

Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)

Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)

Khi đó BĐT <=>

\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)

<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)

Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 2 2020 lúc 9:27

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)

Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)

Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)

Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)

\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Ta lại có 

\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)

Tương tự \(b^2\le3b-2;c^2\le3c-2\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)

\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)

Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)

\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)

Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)

\(-\left[4\left(a+b+c\right)-12\right]=0\)

\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\le a^2+b^2+c^2+ab+bc+ca\)

hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)

Khách vãng lai đã xóa