chứng tỏ phân số n/n+1 tối giản
mong mọi người làm hộ
Bài 1 : Tìm x nguyên dương biết :
x/9 < 7/x < x/6
Bài 2 : Chứng tỏ phân số tối giản với mọi n nguyên :
n + 1 / 2n + 3
Chứng minh rằng hai phân số sau tối giản với mọi STN n
a n+1 /2n+3
b 2n+3 / 4n+8
c 3n+2 / 5n+3
Giải nhanh hộ mk nha . Cảm Ơn các bn
a) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản.
b) Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
c) Gọi d là ƯCLN(3n + 2, 5n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
\(\Rightarrow\frac{3n+2}{5n+3}\) là phân số tối giản.
Gọi d là ƯCLN của n + 1 , 2n + 3
=> n + 1 chia hết cho d , 2n + 3 chia hết cho d
=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia HẾT CHO d
=> 1 chia hết cho d
=> d = 1
Vậy n + 1/2n + 3 tối giản với mọi số n
b,c tương tự
HÀ THANH THẢO:
Bài này dài quá. Thôi chiều ý bạn vậy!!!
a, n + 1/ 2n + 3
Ta gọi a là ƯCLN (n + 1; 2n + 3)
Theo bài ra, ta có:
n + 1 \(⋮\)a; 2n + 3 \(⋮\)a
=> 2n + 1 chia hết cho a; 2n + 3 chia hết cho a
Ta lại có:
2n + 2 chia hết cho a; 2n + 3 chia hết cho a
=> 2n + 3 - 2n + 2 \(⋮\)a
=> 1 \(⋮\)a
Vậy a = 1
Câu b và c: bạn tự áp dụng vào:
^_^, Chúc bạn học tốt!!!
chứng minh rằng mọi phân số có dạng \(\frac{n+1}{2n+3}\)với ( n thuộc N ) đều là phân số tối giản
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
1, chứng tỏ rằng phân số\(\frac{12n+1}{30n+2}\)(n thuộc N) là tối giản
cho phân số tối giản a/b ( a,b thuộc N, a<b , b khác 0 ) chứng tỏ rằng b-a/b cũng tối giản
Gỉa sử phân số \(\frac{b-a}{b}\)chưa tối giản. Như vậy b - a và b có ước chung là d > 1
Ta có b - a = dq1 (1) và b = dq2 (2) , trong đó q1 , q2 thuộc N và q2 > q1.
Từ (1) ; (2) suy ra a = d(q2 - q1 ) nghĩa là a cũng có ước là d.
Như vậy a và b có ước chung là d > 1 trái với giả thiết \(\frac{a}{b}\) là phân số tôi giản
Vậy nếu \(\frac{a}{b}\) tối giản thì \(\frac{b-a}{b}\) cũng tối giản
AI BIẾT LÀM BÀI NÀY CHỈ GIÚP EM VỚI Ạ!! EM CẢM ƠN
Cho tổng A = 1 + 3 + 5 +.....+(2n + 1), tổng B = 2 + 4 + 6 + 8 +.....+ 2n (n thuộc N).
a)Tính số hạng của tổng A, số hạng của tổng B
b)Chứng tỏ rằng: với mọi số tự nhiên n thì tổng A là số chính phương.
c)Tổng B có thể là số chính phương không?
\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .
Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)
Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)
\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)
Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
Vì n thuộc N nên tổng của A là : một số chính phương .
\(c)\) Ta có : Số hạng của dãy số B là : n
Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right)\)
Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 .
Ta thấy chúng đều không thoả mãn .
vậy.............
Bạn xem lại câu A+B mới là số chính phương k?
Câu a) mình không hiểu đề bài cho lắm nên mình làm câu b) với c) nhé:
Ta sẽ chứng minh \(A=1+3+5+...+\left(2n-1\right)=n^2\) bằng quy nạp. Với \(n=1\) thì \(1=1^2\), luôn đúng. Giả sử khẳng định đúng đến \(n=k\). Với \(n=k+1\) thì ta có:
\(A=1+3+5+...+\left(2k+1\right)\)
\(A=1+3+5+...+\left(2k-1\right)+\left(2k+1\right)\)
\(A=k^2+2k+1\)
\(A=\left(k+1\right)^2\) là SCP.
Vậy khẳng định được chứng minh. \(\Rightarrow\) A là SCP với mọi n (đpcm).
c) Ta có \(B=2+4+6+...+2n\)
\(B=2\left(1+2+3+...+n\right)\)
Ta sẽ chứng minh \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\) nhưng không phải bằng quy nạp vì mình nghĩ bạn nên biết nhiều cách khác nhau để chứng minh một đẳng thức. Mình sẽ dùng phương pháp đếm bằng 2 cách để chứng minh điều này.
Ta xét 1 nhóm gồm \(n+1\) người, mỗi người đều bắt tay đúng 1 lần với 1 người khác. Khi đó ta sẽ tính số cái bắt tay đã xảy ra bằng 2 cách:
Cách 1: Ta chọn ra 1 người, gọi là người số 1, bắt tay với \(n\) người khác. Sau đó ta chọn ra người số 2, bắt tay với \(n-1\) người khác (không tính người số 1). Chọn ra người số 3, bắt tay với \(n-2\) người (không tính người số 1 và 2). Cứ tiếp tục như thế, cho đến người thứ \(n-1\) thì sẽ có 1 cái bắt tay với người thứ \(n\). Do đó số cái bắt tay đã xảy ra là \(1+2+...+n\)
Cách 2: Số cái bắt tay chính là số cách chọn 2 người (không kể thứ tự) trong n người đó. Số cách chọn ra người thứ nhất là \(n+1\), chọn ra người thứ hai là \(n\). Do đó số cách chọn 2 người có kể thứ tự sẽ là \(n\left(n+1\right)\). Nhưng do ta không tính thứ tự nên số cái bắt tay đã xảy ra là \(\dfrac{n\left(n+1\right)}{2}\).
Do vậy, ta có \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
Như thế, \(B=2\left(1+2+...+n\right)=2.\dfrac{n\left(n+1\right)}{2}=n\left(n+1\right)\) không thể là số chính phương, bởi vì: \(n^2=n.n< n\left(n+1\right)< \left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
chứng tỏ rằng \(\frac{n+2}{2n+3},\left(n\in N\right)\)là phân số tối giản.
gọi d là ƯCLN ( n + 2 ; 2n + 3 )
Ta có : n + 2 \(⋮\)d \(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )
2n + 3 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )
= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1
Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1
Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản
để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)
Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)
do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản
ta có:giả sử ƯCLN (n+2 ;2n+3)=d
ta có n+2=2(n+2)=2n+4 (1)
2n+3=2n+3 (2)
Từ (1) và (2)
ta có :(2n+4)-(2n+3) chia hết cho d
1 chia hết cho d
d thuộc ước của 1
nên n+2 và 2n+3 nguyên tố cùng nhau
Vậy n+2/2n+3 là phân số tối giản
1)Chứng minh rằng: 4n + 7/6n +1 là phân số tối giản
2) Cho A=1-1/2+1/3-1/4+...+1/99-1/100
Chứng tỏ:7/12<A<5/6
Làm ơn giải ra giúp mình nha :-)
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
CHỨNG TỎ 3N : 3N + 1 LÀ PHÂN SỐ TỐI GIẢN
Gọi d = (3n;3n+1) (d thuộc N)
=> (3n) chia hết cho d và (3n + 1) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(3n; 3n + 1) = 1
=> Phân số 3n/3n+1 tối giản với mọi n thuộc N
vì 3n và 3n+1 là 2 số nguyên tố cùng nhau và có ƯCLN=1
mà ps tối giản cx có ƯCLN=1
=>\(\frac{3n}{3n+1}\)\(là\)phân số tối giản