Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nàng tiên cá
Xem chi tiết
piojoi
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
Mới vô
1 tháng 11 2017 lúc 14:52

\(a+c=2b\\ \Leftrightarrow d\left(a+c\right)=2bd\\\Leftrightarrow d\left(a+c\right)=c\left(b+d\right) \\ \Leftrightarrow ad+cd=cb+cd\\ \Leftrightarrow ad=cb\\ \Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Cuber Việt
Xem chi tiết
Nam Nguyễn
30 tháng 11 2017 lúc 22:09

Ta có:

\(a+c=2b_{\left(1\right)}.\)

\(2bd=c\left(b+d\right)_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\Rightarrow\left(a+c\right)d=c\left(b+d\right).\)

\(\Rightarrow ad+cd=cb+cd\) (t/c phân phối).

\(\Rightarrow ad=bc\) (rút gọn cả 2 vế cho \(cd\)).

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c cơ bản của tỉ lệ thức).

\(\Rightarrowđpcm.\)

Thuy Khuat
Xem chi tiết
Na Cà Rốt
24 tháng 10 2017 lúc 21:02

Thay a+c=2b vào 2bd=c(b+d) ta có:

(a+c)d=cd+cb

<=> ad+cd=cd+cb

<=> ad=cb

<=> \(\dfrac{a}{b}=\dfrac{c}{d}\)

hoa hồng
Xem chi tiết
Nguyễn Thanh Hằng
3 tháng 9 2017 lúc 14:13

Bài 1 :

Ta có :

\(a+c=2b\left(1\right)\)

\(2bd=c\left(b+d\right)\left(2\right)\)

Thay \(\left(1\right)\) vào \(\left(2\right)\) ta được :

\(\left(a+c\right)d=c\left(b+d\right)\)

\(\Leftrightarrow ad+cd=cb+cd\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm\)

Nguyễn Thanh Hằng
3 tháng 9 2017 lúc 14:18

Bài 2 :

\(a,\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)

\(=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}\)

\(=5\left(10-9\right)\)

\(=5\)

b, \(\dfrac{5\left(3.7^{15}-19.17^{14}\right)}{7^{14}+3.7^{15}}\)

\(=\dfrac{5.2.7^{14}}{10.7^{15}}\)

\(=\dfrac{1}{7}\)

uy na
Xem chi tiết
linh khanh
Xem chi tiết
Nguyễn Đình Dũng
6 tháng 9 2017 lúc 13:42

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> \(\dfrac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(4k^4+5\right)}=\dfrac{b^4}{d^4}\)(1)

\(\dfrac{a^2b^2}{c^2d^2}=\dfrac{k^2b^2b^2}{k^2d^2d^2}=\dfrac{b^4}{d^4}\)(2)

Từ (1) và (2) suy ra: \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)

b.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> \(\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (1)

\(\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)

 Mashiro Shiina
6 tháng 9 2017 lúc 14:16

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(k^4+5\right)}=\dfrac{b^4}{d^4}\\\dfrac{a^2b^2}{c^2d^2}=\dfrac{bk^2b^2}{dk^2d^2}=\dfrac{k^2b^4}{k^2d^4}=\dfrac{b^4}{d^4}\end{matrix}\right.\)

Vậy.....

\(\left\{{}\begin{matrix}\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\\\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\end{matrix}\right.\)

Vậy....

Sakura Nguyen
6 tháng 9 2017 lúc 16:30

Theo đề bài, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^4}{c^4}=\dfrac{b^4}{d^4}=\dfrac{4a^4}{4c^4}=\dfrac{5b^4}{5d^4}=\dfrac{4a^4+5b^4}{4c^4+5d^4}\left(1\right)\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2b^2}{b^4}=\dfrac{c^2d^2}{d^4}=\dfrac{a^2b^2}{c^2d^2}=\dfrac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)(đpcm)
b/ Theo đề bài, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^{2004}}{c^{2004}}=\dfrac{b^{2004}}{d^{2004}}=\dfrac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\left(1\right)\)
\(\Rightarrow\dfrac{a^{2004}}{c^{2004}}=\dfrac{b^{2004}}{d^{2004}}=\dfrac{a^{2004}-b^{2004}}{c^{2004}-d^{2004}}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}=\dfrac{a^{2004}-b^{2004}}{c^{2004}-d^{2004}}=\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\left(đpcm\right)\)

vivaswala
Xem chi tiết
Steolla
27 tháng 8 2017 lúc 8:06

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

ST
27 tháng 8 2017 lúc 8:09

2bd = c(b+d)

=> (a+c)d=c(b+d)

=>ad+cd=bc+cd

=>ad=bc

=> \(\frac{a}{b}=\frac{c}{d}\)