(5-x)(2+3x)=4-9x^2
giải pt
giải pt :
a,\(9x^2-6x-5=\sqrt{3x+5}\)
b, \(9x^2+12x-2=\sqrt{3x+8}\)
c, \(x^2-4x-3=\sqrt{x+5}\)
d,\(x^2-6x-2=\sqrt{x+8}\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{8}{3}\)
\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)
Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)
\(\left(t^2-6\right)^2-6-t=0\)
\(\Leftrightarrow t^4-12t^2-t+30=0\)
\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Giải pt:
\(x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}\)
Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
3x+2 phần 3x-2 -6 phần 2+3x =9x^2 phần 9x^2-4 giải pt
\(\text{ĐKXĐ: }3x-2\ne0\text{ và }2+3x\ne0\)
\(\Leftrightarrow x\ne\frac{2}{3}\text{ và }x\ne-\frac{2}{3}\)
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{\left(3x-2\right)\left(3x+2\right)}-\frac{6.\left(3x-2\right)}{\left(3x-2\right)\left(3x+2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow x=\frac{8}{3}\)
Giải pt
9x2 +30 - 14 = 5(3x-4)\(\sqrt{ }\)9x-5
Giải pt
1, 9x^2-1 =(3x+1)(4x+1)
2, 2x^3+3x^2-32x=48
3, (2x+5)^2-(x+2)^2=0
4, 2x^3+6x^2=x^2+3x
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
Bài 1: giải các pt sau:
1,(x-1)^2-(x+1)^2=2(x+3)
2,(2x-1)^2-(2x+1)^2=4(x-3)
3,(2x+3)^2-(2x+3).(2x-4)=-(x-2)^2
4,8x^3-(x+1)^3=3x-3
5,(3x-2).(9x^2+6x+4)-(3x+1).(9x^2-3x+1)=(2x+1).(2x-1)-4x(x-3)
\(\left(x-1\right)^2-\left(x+1\right)^2=2\left(x+3\right)\)
\(\Leftrightarrow\left(x-1+x+1\right)\left(x-1-x-1\right)=2\left(x+3\right)\)
\(\Leftrightarrow2x\left(-2\right)=2\left(x+3\right)\)
\(\Leftrightarrow-4x=2x+6\)
\(\Leftrightarrow-6x=6\)
\(\Leftrightarrow x=-1\)
2) \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)
\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow4x\left(-2\right)-4x+12=0\)
\(\Leftrightarrow-12x=-12\)
\(\Leftrightarrow x=1\)
3)\(\left(2x+3\right)^2-\left(2x+3\right)\left(2x-4\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3-2x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow7\left(2x+3\right)+x^2-4x+4=0\)
\(\Leftrightarrow x^2+10x+25=0\)
\(\Leftrightarrow\left(x+5\right)^2=0\)
\(\Leftrightarrow x=-5\)
4) \(8x^3-\left(x+1\right)^3=3x-3\)
\(\Leftrightarrow8x^3-\left(x^3+3x+3x^2+1\right)-3x+3=0\)
\(\Leftrightarrow7x^3-3x^2-6x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x^2+4x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2+3\sqrt{2}}{7}\\x=\frac{-2-3\sqrt{2}}{7}\end{matrix}\right.\)
5)\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left(\left(3x\right)^3-1^3\right)=x-4\)
\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)=x-4\)
\(\Leftrightarrow-7=x-4\)
\(\Leftrightarrow x=-3\)
(1) giải pt quy về \(ax^2+bx+c=0\)
1) \(x^2=3x\) 2) \(x^2-3x=4\)
3) \(x^4-5x^2+6=0\) 4) \(x^3=9x\)
5) \(\left(x+2\right)\left(x-3\right)=x^2-4\) 6) \(\dfrac{x+11}{x^2-1}-\dfrac{x-1}{x+1}=\dfrac{2\left(x+7\right)}{x+1}\)
giúp mk vs mk cần gấp
1)
<=> \(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
x= 0
x = 3
2) <=> \(x\left(x-3\right)=4\)
=> \(x=\dfrac{4}{x}+3\)
\(2,x^2-3x=4\)
\(\Leftrightarrow x^2-3x-4=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)
\(\Rightarrow\)Pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)
Vậy \(S=\left\{4;-1\right\}\)
\(3,x^4-5x^2+6=0\)
Đặt \(t=x^2\left(t\ge0\right)\)
Pt trở thành
\(t^2-5t+6=0\)
\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)
\(\Rightarrow\)Pt ó 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)
\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)
Vậy \(S=\left\{\pm\sqrt{3}\right\}\)
\(4,x^3=9x\)
\(\Leftrightarrow x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
Vậy \(S=\left\{0;\pm3\right\}\)
\(5,\left(x+2\right)\left(x-3\right)=x^2-4\)
\(\Leftrightarrow x^2-3x+2x-6-x^2+4=0\)
\(\Leftrightarrow-x-2=0\)
\(\Leftrightarrow-x=2\)
\(\Leftrightarrow x=-2\)
Vậy \(S=\left\{-2\right\}\)
GIẢI PT
a) 4x-8/ 2x^2 +1=0
b) x^2 -x-6 / x-3=0
c) x+5 /3x-6 - 1/2 =2x-3 /2x -4
d) 12 / 1-9x^2 = 1-3x / 1+3x - 1+3x / 1-3x
<=>4x-8=0
<=>4x=8
=.x=2(nhan)