1, Cho ba số a, b, c thỏa mãn : a+b+c=0: a^2+b^2+c^2=2009, Tính .a^4+b^4+c^4
Cho ba số a, b, c thỏa mãn \(\hept{\begin{cases}a+b+c=0\\\\a^2+b^2+c^2=2009\end{cases}}\) tính \(A=a^4+b^4+c^4\)
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)
\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)
\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)
cho 3 số a b c thỏa mãn
a + b +c = 0
a2 + b2 +c2 =2009
tính A = a4 + b4 + c4
\(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow2ab+2bc+2ac=-2009\)
\(\Leftrightarrow ab+bc+ac=-\dfrac{2009}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{4036081}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{4036081}{4}\)
\(a^2+b^2+c^2=2009\)
nên \(a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=4036081\)
\(\Leftrightarrow a^4+b^4+c^4=\dfrac{4036081}{2}\)
Cho ba số a,b,c thỏa mãn a+b+c=0.CMR (a^2 +b^2 +c^2)^2 =2(a^4 +b^4 +c^4)
(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)
suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2
Mà a+b+c= 0(gt)
suy ra: 0^2 x 2=0^4 x 2
0 = 0
=)))
cho ba ssos a,b,c thỏa mãn a/2009 = b/2010 = c/2011
tính giá trị của biểu thức : M = 4(a-b)(b-c) - (c-a)^2
cho 3 số a b c thỏa mãn
a + b +c = 0
a2 + b2 +c2 =2009
tính A = a4 + b4 + c4
ơ hay tui đăng lên hỏi bây giờ lại hỏi tui
bài này ở link http://olm.vn/hoi-dap/question/327349.html
Cho a,b,c thỏa mãn
\(\orbr{\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=2009\end{cases}}}\)
Tính a4 + b4 + c4
\(\text{Chắc bn ghi thiếu đề :}\)
\(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\)
\(Tính\)\(a^4+b^4+c^4\)
\(Giải:\)\(\text{Đặt}\)\(M=a^4+b^4+c^4\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(1=M=\left(2a^2b^2+2b^2c^2+2c^2a^2\right)\)
\(M=1-\left(2a^2b^2+2b^2c^2+2c^2a^2\right)=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(0=1+2ab+2ac+2bc\)
\(2\left(ab+ac+bc\right)=-1\Rightarrow ab+ac+bc=-\frac{1}{2}\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2\left(a^2bc+ab^2c+abc^2\right)\)
\(\frac{1}{4}=^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)\)
\(\Rightarrow^2b^2+a^2c^2+b^2c^2=\frac{1}{4}.0\left(vì\right)a+b+c=0\)
\(M=1-2.\frac{1}{4}=\frac{1}{2}\)
\(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0.\)
\(\Leftrightarrow ab+bc+ca=-\frac{2009}{2}.\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{2009^2}{4}.\)
\(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{2009^2}{4}.\)
\(a^2b^2+b^2c^2+c^2a^2=\frac{2009^2}{4}.\)
Ta có \(\left(a^2+b^2+c^2\right)^2=2009^2\)
\(a^4+b^4+c^4=2009^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2009^2-2.\frac{2009^2}{4}=\frac{2009^2}{2}.\)
giải phương trình
\(\sqrt{x+1}+\sqrt{4-x}+\) căn (x+1)(x-4) = 5
Cho 3 số a,b,c thỏa mãn a + b + c = 0
\(a^2+b^2+c^2=2009\)
Tính \(A=a^4+b^4+c^4\)
Ta có:
\(2009^2=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2009^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(sao\right)\)
\(0=\left(a+b+c\right)^2=a^2+b^2+c^2-2\left(ab+bc+ca\right)=2009-2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca=\frac{2009}{2}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{2009^2}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{2009^2}{4}\)
Thay vào ( sao ) ta có ngay \(A=a^4+b^4+c^4=2009^2-\frac{2009^2}{2}=\frac{2009^2}{2}\)
1) ĐK : \(\hept{\begin{cases}x+1\ge0\\4-x\ge0\\\left(x+1\right)\left(x-4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le4\\x\ge4hoacx\le-1\end{cases}}\)
<=> x = -1 hoặc x = 4
+) Với x= - 1 ta có: \(\sqrt{5}=5\)loại
+) Với x = 4 ta có: \(\sqrt{5}=5\)loai
1) Kết luận: Phương trình vô nghiệm
2) có: \(ab+bc+ac=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=-\frac{2009}{2}\)
=> \(a^2b^2+b^2c^2+c^2a^2=\left(ab+ac+bc\right)^2-2abc\left(a+b+c\right)=\left(\frac{2009}{2}\right)^2\)
=> \(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
= \(2009^2-\frac{2009^2}{2}=\frac{2009^2}{2}\)
Cho 3 số a,b,c thỏa mãn:
a+b+c = 0 ; a^2+b^2+c^2 = 14.
Tính P=1+a^4+b^4+c^4 .
1) Cho 2 số x, y thỏa mãn x-2y=5; x^2+4y^2=29 Tính giá trị của A=x^3-8y^3
2) Cho các số thực a, b, c thỏa mãn a+b+c=0 Chứng minh rằng a^4+b^4+c^4=1/2(a^2+b^2+c^2)^2
1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy) (vì x-2y=5 và x^2+4y^2=29) (1)
Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)
=> xy=1 (2)
Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155
Vậy gt của bt A là 155
2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab
=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)
=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)
=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)