Cho tam giác ABC có AB bé hơn AC và AD là tia phân giác của góc A. Cm DB bé hơn DC
cho tam giác abc có ab bé hơn ac và ad là tia phan giác góc a. cm db bé hơn dc
Vì AB<AC nên \(\widehat{ABC}>\widehat{ACB}\)
Xét hai tam giác ABD và ACD có :
\(\widehat{DAB}=\widehat{DAC}\)
\(\widehat{ABC}>\widehat{ACB}\)
Mà cạnh BD đối với góc BAD và cạnh DC đối với góc DAC nên DB<DC
Cho tam giác ABC có góc A= 60 độ, AB< AC , đường cao BH ( H thuộc AC)
a) So sánh góc ABC và góc ACB. Tính góc ABH
b) Vẽ AD là phân giác của góc A (D thuộc BC). Vẽ BI vuông góc AD tại I. CMR tam giác AIB= tam giác BHA
c) Tia BI cắt AC ở E. CMR tam giác ABE đều
d) CMR DC> DB
Cho tam giác ABC, D thuộc BC và DB/DC bằng AB/AC. Chứng minh rằng AD là phân giác của góc A
tam giác abc vuông tại a có ab bé hơn ac . vẽ ah vuông góc bc ( h thuộc bc ). khẳng định nào sau đây là đúng : hb bé hơn hc, hc bé hơn hb, ab bé hơn ah, ac bé hơn ah
hb bé hơn hc đúng nhé
kết bạn với mình nhé
hb bé hơnhc
đúng thì h
ai kb cứ việc
Cho tam giác nhọn ABC có AB<AC. Gọi O là trung điểm của BC, kẻ các đường cao BM và CN của tam giác ABC. Tia phân giác của góc BAC cắt tia phân giác của góc MON tại D. Gọi E là giao điểm của AD và BC. Chứng minh rằng tứ giác BNDE nội tiếp.
cho tam giác ABC có góc A bằng 120 độ đường phân giác AD. Gọi Klà giao điểm của đường thẳng CAvà đường phân giác góc ngoài tại đỉnh B gọi E là giao điểm của AB và DK . CM: DK là tia phân giác của góc ADB
Cho tam giác ABC có AB bé hơn AC, tia phân giác góc A cắt BC tại H. Trên AC, lấy M sao cho AM=AB. Hai tia AB và MH cắt tại Đ
a) tam giác AHB=tam giácAHM
b) MD= BC
c) AH vuông góc CD
\(a,Xét\Delta AHBvà\Delta AHMcó\)
\(AB=AM\left(gt\right)\)
\(\widehat{A1}=\widehat{A2}\left(AHlàtiaphângiáccủa\widehat{A}\right)\)
\(AHlàcạnhchung\)
\(\Rightarrow\Delta AHB=\Delta AHM\left(c-g-c\right)\left(đpcm\right)\)
\(b,Tacó\widehat{ABH}+\widehat{HBD}=180^0\left(k/bù\right)\)
\(Và:\widehat{AMH}+\widehat{HMC}=180^0\left(kề/bù\right)\)
\(Mà:\widehat{ABH}=\widehat{AMH}\left(\Delta ABH=\Delta AMH\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{HMC}\)
\(Xét\Delta BHDvà\Delta MHCcó:\)
\(BH=MH\left(\Delta AHB=\Delta AHM\right)\)
\(\widehat{BHD}=\widehat{MHC}\left(đ/đỉnh\right)\)
\(\widehat{HBD}=\widehat{HMC}\left(cmt\right)\)
\(\Rightarrow\Delta BHD=\Delta MHC\left(g-c-c\right)\)
\(\Rightarrow HD=HC\left(2c.t.ứ\right)\)
Lại có: \(\left\{{}\begin{matrix}BC=BH+HC\\MD=MH+HD\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}BH=MH\left(cmt\right)\\HC=HD\left(cmt\right)\end{matrix}\right.\)
\(MD=BC\left(đpcm\right)\)
\(c,Chứngminhtươngtựtađược:AD=AC\)
\(Xét\Delta ADHvà\Delta ACHcó:\)
\(\widehat{A1}=\widehat{A2}\)
\(AD=AC\left(cmt\right)\)
\(AHlàcạnhchung\)
\(\Rightarrow\Delta ADH=\Delta ACH\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHD}=\widehat{AHC}\left(2.g.t.ứ\right)\)
\(Mà:\widehat{AHD}+\widehat{AHC}=180^0\)
\(\Rightarrow\widehat{AHD}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AH\perp CD\)
Cho tam giác ABC cân tại A có góc BAC nhọn . Tia phân giác của góc BAC cắt cạnh BC tại D . Đường trung tuyến BE của tam giác ABC cắt cạnh AD tại G
a) CM : tam giác BAD = tam giác CAD
b) CM : G là trọng tâm của tam giác ABC và GB=GC
c) CM: AD>CD
d) Trên tia đối của tia EB lấy điểm K sao cho G là trung điểm của BK . Gọi F là trung điểm của CK và GF cắt AC tại I . CM: AC=3CI
HELP ME !!!!!!!!!!!! GIÚP VỚI VỘI LẮM R
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
a) cho tam giác ABC cân tại A. Trên tia đối của tia AB lây điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=AN. chứng minh rằng tứ giác MNBC là hình thang cân.
b) cho tứ giác ABCD có AD=AB=BC và gócA+gócC=180 độ. chứng minh rằng:
-DB là phân giác góc D
-ABCD là hình thang cân
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC