Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lan
Xem chi tiết
Nguyễn Lan
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
viston
Xem chi tiết
Hoàng Anh
30 tháng 10 2016 lúc 18:52

ra 1 và 5 bạn nhé thề 100% sai bù tiền

Duong Thi Nhuong
3 tháng 11 2016 lúc 21:24

Vì 10 = 2 * 5 = 1 * 10 nên có các trường hợp sau
- Trường hợp 1: 2x + 1 = 10, y - 3 = 1 (loại, vì 2x + 1 lẻ)

- Trường hợp 2: 2x + 1 = 1, y - 3 = 10 => x = 0, y = 13

- Trường hợp 3: 2x + 1 = 2, y - 3 = 5 (loại)

- Trường hợp 4: 2x + 1 = 5, y - 3 = 2 => x = 2, y = 5

Vậy cặp số cho tích xy lớn nhất là (2,5)

   
nhung Nguyễn
Xem chi tiết
tth_new
28 tháng 1 2019 lúc 18:32

Nháp thử trước nhé: (thường gọi là định hướng làm bài)

Thêm đk: x,y>0

Ta thử khai thác giả thiết:

Biến đổi vế trái giả thiết,ta có:

\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Leftrightarrow2x^2+\frac{y^2}{4}+\frac{1}{x^2}-1=3\)

\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=3\)

\(3\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)

\(\Leftrightarrow3\ge x^2+y+1\)\(\Leftrightarrow2\ge x^2+y\)

\(\Leftrightarrow2\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\)

Suy ra \(\Rightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le1\Leftrightarrow\frac{\left(xy\right)^2}{y}\le1\Rightarrow\left(xy\right)^2\le y\Rightarrow P=xy\le\sqrt{y}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{\sqrt{2}}{2};y=2\)

Có dấu "=" rồi => dễ tìm min hơn :v

tth_new
28 tháng 1 2019 lúc 18:41

à không,nãy nhầm rồi.Thử lại:

\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=4\)

\(4\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)

\(\Leftrightarrow4\ge x^2+y+1\Leftrightarrow3\ge x^2+y\)

hay \(3\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\Leftrightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le\frac{3}{2}\)

Suy ra \(\frac{\left(xy\right)^2}{y}\le\frac{9}{4}\Rightarrow\left(xy\right)^2\le\frac{9y}{4}\Leftrightarrow xy\le\sqrt{\frac{9y}{4}}\) :v

Phạm Thanh Trà
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 5 2016 lúc 14:01

Áp dụng bất đẳng thức Cosi, ta có : 

\(53=2x+3y\ge2\sqrt{2x.3y}=2\sqrt{6}.\sqrt{xy}\Rightarrow xy\le\left(\frac{53}{2\sqrt{6}}\right)^2\)

Do đó : \(P=\sqrt{xy+4}\le\sqrt{\left(\frac{53}{2\sqrt{6}}\right)^2+4}=\sqrt{\frac{2905}{24}}\)

Vậy : Max \(P=\sqrt{\frac{2905}{24}}\Leftrightarrow\left(x;y\right)=\left(\frac{53}{4};\frac{53}{6}\right)\)

trần tuấn anh
Xem chi tiết
Nguyễn Kiên
10 tháng 6 2017 lúc 15:37

Có : với 2 số có tổng không đổi , tích của chúng lớn nhất <=> 2 số đó = nhau(tính chất)(3 số cũng vậy nha :))

=> max P <=> x=y=z=672,(3); nhưng x ; y ; z thuộc N

=> 2 số = 672 ; 1 số = 673

=> max P = 303916032

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 8 2021 lúc 19:10

\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)

\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)

\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)

Đặt \(xy=a\Rightarrow0\le a\le4\)

\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)

\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)

\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)

\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)

trần chí công
Xem chi tiết
Phạm Thanh Trà
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 5 2016 lúc 14:07

Mình đã trả lời bạn rồi đó!

http://olm.vn/hoi-dap/question/594638.html