b1 X+2-m .(3x+1)=5
a) Tìm m để pt trên là pt bậc nhast
b) Giải phương trình m=1
1. Giải phương trình: 2x4 - 3x2 - 5 = 0
2. Cho phương trình bậc 2 ẩn x: x2 - (m+5)x-m+6=0 (1) (m là tham số)
a. Giải pt (1) khi m = 1
b. Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn: x12x2 + x1x22 = 18
#help me, hứa sẽ vote.
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
cho pt :2(m-2)x+3=3m-13 (1) a)tìm m để pt (1) là phương trình bậc nhất một ẩn. b)với giá trị nào của m thì phương trình (1) tương đương với phương trình: 3x+7=2(x-1)=8 (2)
a: Để phương trình là phươg trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 3x+7=2(x-1)+8
=>3x+7=2x-2+8
=>3x+7=2x+6
=>x=-1
Thay x=-1 vào (1), ta được:
-2(m-2)+3=3m-13
=>-2m+4+3=3m-13
=>-2m+7=3m-13
=>-5m=-20
hay m=4(nhận)
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Bài 1: Cho phương trình: (m-1)x+1=0 (1)
a) Tìm ĐK của m để pt (1) là pt bậc nhất một ẩn.
b) Tìm ĐK của m để pt (1) có nghiệm x = -5.
c) Tìm ĐK của m để pt (1) vô nghiệm.
Cho phương trình ( m – 2 ) x + 3 = 0 ( m là hằng số)
a)Với giá trị nào của m thì pt trên là pt bậc nhất một ẩn?
b)Giải phương trình khi m = 5
a) PT trên là PT bậc nhất \(\Leftrightarrow m-2 \ne 0 \Leftrightarrow m \ne 2\)
b) \(m=5 \Rightarrow 3x+3=0 \Leftrightarrow x=-1\)
Vậy \(x=-1\) khi \(m=5\).
a/ Với \(m\ne2\) thì pt đã cho là pt bậc nhất một ẩn
b/ Thay m = 5 vàopt đã chota được :
\(3x+3=0\)
\(\Leftrightarrow3\left(x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) Để phương trình trên là phương trình bậc nhất 1 ẩn thì \(m-2\ne0\Leftrightarrow m\ne2\)
b) Thay \(m=5\) vào phương trình trên, ta được
\(\left(5-2\right)x+3=0\\ \Leftrightarrow3x+3=0\\ \Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\)
Vậy \(x=-1\)
Bài 6: Cho phương trình m2(x – m) = x – 3m + 2 (*)
a, Tìm m để (*) là phương trình bậc nhất một ẩn
b, Giải PT khi m = 0
c, Tìm m để (1) có nghiệm x = 3
d, Tìm m nguyên để x nguyên
a: =>m^2x-m^3-x+3m-2=0
=>x(m^2-1)=m^3-3m+2
=>x(m-1)(m+1)=m^3-m-2m+2=m(m-1)(m+1)-2(m-1)=(m-1)^2*(m+2)
Để đây là pt bậc nhất 1 ẩn thì (m-1)(m+1)<>0
=>m<>1 và m<>-1
b: Khi m=0 thì pt sẽ là x+2=0
=>x=-2
c: Khi x=3 thì pt sẽ là:
3(m^2-1)=m^3-3m+2
=>(m-1)^2(m+1)-3(m-1)(m+1)=0
=>(m-1)(m+1)(m-1-3)=0
=>(m-1)(m+1)(m-4)=0
=>\(m\in\left\{1;-1;4\right\}\)
1) cho pt sau : x+2-m(3x+1) =5
a) Tìm m để pt trên là pt bậc nhất
b) Giải pt với m=1
a: \(\Leftrightarrow x+2-3xm-m=5\)
\(\Leftrightarrow x\left(1-3m\right)=5+m-2=m+3\)
Để đây là pt bậc nhất một ẩn thì 1-3m<>0
hay m<>1/3
b: Khi m=1 thì \(x\left(1-3\right)=1+3=4\)
=>-2x=4
hay x=-2
Cho pt sau : x+2-m.(3x+1)=5
a) Tìm m để pt trên là pt bậc nhất
b) Giải pt với m =1
a. Ta có: x+2-m(3x+1)=5
\(\Leftrightarrow\)x(1-3m)-3-m=0 (1)
Để pt trên là pt bậc nhất thì (1-3m) khác 0
\(\Rightarrow m\ne\dfrac{1}{3}\)
b. Thay m=1 vào (1) ta có:
x(1-3.1)-3-1=0
\(\Leftrightarrow\) x=-2