cho P(x)=ax^3+bx^2+cx+d.cm nếu P(x) có giá trị nguyên với mọi x thuộc Z thì 6a;2b;a+b+c và d cũng là các số nguyên
cho đa thưc f(x) = ax3 + bx2 + cx +d có giá trị nguyên với mọi x thuộc Z . chứng tỏ 6a và 2b là các số nguyên
Cho đa thức f(x)=ax^3+bx^2+cx+d. Chứng minh rằng nếu f(x) nhận giá trị nguyên với mọi giá trị nguyên của x thì d; 2b; 6a là các số nguyên
Bạn tham khảo lời giải tại đây:
CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24
CMR ax3+bx2+cx+d có giá trị nguyên với x thuộc Z thì 6a;2b; a+b+c là các số nguyên
CMR nếu đa thức M(x)=ax3 + bx2+cx+d có giá trị nguyên với mọi x thì 6a, 2b,a+b+c,d là các số nguyên
cho f(x)= ax3+bx2+cx+d
a, Chứng minh nếu f(x) nhận giá trị nguyên với ,ọi x nguyên thì 6a, 2b, a+b+c, d đều là số nguyên
b Chứng minh rằng nếu 6a, 2b, a+b+c, d là các số nguyên thì f(x) nhân giá trị nguyên với mọi x nguyên
chứng minh rằng f(x)=ax^3+bx^2+cx+d có giá trị nguyên với mọi x nguyên khi 6a,2b,a+b+c,d là số nguyên
Cho đa thức f(x)=ax3+bx2+cx+d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ 2b là số nguyên
Mấy bạn giúp mk nha!!!
\(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)
\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)
\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)
Do f(x)=ax3+bx2+cx+d đạt giá trị nguyên với mọi x => d;a+b+c+d;-a+b-c+d nguyên
=>(a+b+c+d)+(-a+b-c+d)=2b+2d mà d nguyên => 2d nguyên
=>(2b+2d)-2d=2b nguyên
Cmr: 6a, 2b, a+b+c, d nguyên<=>f(x) = ax^+bx^2+cx+d có giá trị nguyên với mọi x nguyên
Cho f(x) = ax3+bx2+cx +d có giá trị nguyên với mọi x thuộc Z.
Chứng minh rằng: 6a, 2b thuộc Z.
+ Với x=0 ta có f(x) = d ( \(f\left(0\right)\in Z\Rightarrow d\in Z\) )
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d\)
+ Với x= 1 ta có \(f\left(1\right)=a+b+c+d\)
\(\Rightarrow f\left(-1\right)+f\left(1\right)=2b+2d\)
\(\Rightarrow2b=f\left(-1\right)+f\left(1\right)-2d\)
\(\Rightarrow2b\in Z\left(1\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d\)
\(\Rightarrow f\left(2\right)-2f\left(1\right)=6a-2b+d\)
\(\Rightarrow6a=f\left(2\right)-2f\left(1\right)+2b-d\)
\(\Rightarrow6a\in Z\left(2\right)\)
Từ (1) và (2) \(\Rightarrow6a,2b\in Z\left(đpcm\right)\)