Tính:
P=\(\dfrac{2017}{2\cdot3}+\dfrac{2017}{3\cdot4}+...+\dfrac{2017}{19\cdot20}\)
1.tính c = \(\left(1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5+...+18\cdot19\cdot20\cdot21\right)-5-10-15-...-200\)
2. tính d = \(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}-\dfrac{3}{1\cdot2}-\dfrac{3}{2\cdot3}-...-\dfrac{3}{19\cdot20}\)
3.tìm x: \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
4.tìm x: \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)
giải nhanh giùm tớ nhé. ghi cả lời giả ra kìa
3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
\(\Leftrightarrow2x-6-3+6x=4+4-4x\)
\(\Leftrightarrow8x-9=8-4x\)
\(\Leftrightarrow8x+4x=8+9\)
\(\Leftrightarrow12x=17\)
\(\Leftrightarrow x=\dfrac{17}{12}\)
Vậy \(x=\dfrac{17}{12}\)
4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)
\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)
\(\Leftrightarrow6x-12-4-4x=12-9x-12\)
\(\Leftrightarrow6x-4-4x=12-9x\)
\(\Leftrightarrow2x-4=12-9x\)
\(\Leftrightarrow2x+9x=12+4\)
\(\Leftrightarrow11x=16\)
\(\Leftrightarrow x=\dfrac{16}{11}\)
Vậy \(x=\dfrac{16}{11}\)
\(Tính: B = \dfrac{2 - \dfrac{2}{19} + \dfrac{2}{43} - \dfrac{2}{2017}}{3 - \dfrac{3}{19} + \dfrac{3}{43} - \dfrac{3}{2017}} :\dfrac{4 - \dfrac{4}{29} + \dfrac{4}{41} - \dfrac{4}{2018}}{5 - \dfrac{5}{29} + \dfrac{5}{41} - \dfrac{5}{2018}} \)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))
\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)
Giải PT : \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{\sqrt{2017-x}+2016}{\sqrt{2016-x}+2017}\)
Lời giải:
Trong TH này ta thêm điều kiện $x$ là số nguyên dương.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x}{x+1}\)
Vậy \(\frac{x}{x+1}=\frac{\sqrt{2017-x}+2016}{\sqrt{2016-x}+2017}\)
\(\Rightarrow x\sqrt{2016-x}+2017x=(x+1)\sqrt{2017-x}+2016(x+1)\)
\(\Leftrightarrow x\sqrt{2016-x}=(x+1)\sqrt{2017-x}+2016-x\)
\(\Leftrightarrow x(\sqrt{2017-x}-\sqrt{2016-x})+\sqrt{2017-x}+2016-x=0\)
\(\Leftrightarrow \frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}+\sqrt{2017-x}+(2016-x)=0\)
Hiển nhiên ta thấy:
\(\frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}>0\)
\(\sqrt{2017-x}\geq 0\)
\(2016-x\geq 0\)
Do đó pt trên vô nghiệm
Tức là không tìm đc $x$ thỏa mãn.
BT1: Cho A = \(\dfrac{1}{2017}+\dfrac{2}{2017^2}+\dfrac{3}{2017^3}+...+\dfrac{2017}{2017^{2017}}+\dfrac{2018}{2017^{2018}}\)
Chứng minh rằng : A < \(\dfrac{2017}{2016^2}\)
\(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\)
C1:
Gọi \(S=2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\)
\(S=2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\\ 2S=4034+2017+\dfrac{2017}{2^2}+...+\dfrac{2017}{2^{2016}}\\ 2S-S=\left(4034+2017+\dfrac{2017}{2^2}+...+\dfrac{2017}{2^{2016}}\right)-\left(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\right)\\ S=4034-\dfrac{2017}{2^{2017}}\)
(Khuyên dùng)
C2:
\(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\\ =2017\cdot\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\right)\)Gọi \(S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\)
\(S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\\ 2S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\\ 2S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\right)\\ S=2-\dfrac{1}{2^{2017}}\)
\(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\\ =2017\cdot S\\ =2017\cdot\left(2-\dfrac{1}{2^{2017}}\right)\\ =4034-\dfrac{2017}{2^{2017}}\)a) \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{19}+\sqrt{20}}\)
b) \(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
Tính
A=\(\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2018}}{\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}}\)
Dạng bài tương tự như bài này, bạn áp dụng cách làm vào làm bài của bạn nhé: Câu hỏi của Dao Dao - Toán lớp 7 | Học trực tuyến
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2018}}{\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}}\)
Đặt \(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\) là B
\(B=\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\\ =\dfrac{2017}{1}+1+\dfrac{2016}{2}+1+...+\dfrac{1}{2017}+1-2017\\ =\dfrac{2018}{1}+\dfrac{2018}{2}+...+\dfrac{2018}{2017}-2017\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\left(2018-2017\right)\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+1\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\\ =2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2018}}{2018\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}{2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017}{2018}\)
\(\dfrac{1\cdot2\cdot3+2\cdot4+6+4\cdot8\cdot12}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20}\)
\(\dfrac{1\cdot2\cdot3+2\cdot4\cdot6+4\cdot8\cdot12}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20}\\ =\dfrac{1\cdot2\cdot3+2\cdot1\cdot2\cdot2\cdot2\cdot3+4\cdot1\cdot4\cdot2\cdot4\cdot3}{1\cdot3\cdot5+2\cdot1\cdot2\cdot3\cdot2\cdot5+4\cdot1\cdot4\cdot3\cdot4\cdot5}\\ =\dfrac{1\cdot2\cdot3\cdot\left(1+2^3+4^3\right)}{1\cdot3\cdot5\cdot\left(1+2^3+4^3\right)}\\ =\dfrac{1\cdot2\cdot3}{1\cdot3\cdot5}\\ =\dfrac{6}{15}\)
Bạn ghi đề sai rồi, mình sửa lại đề ở phần (*) rồi nhé!
Ta có: \(\dfrac{1.2.3+2.4.6+4.8.12}{1.3.5+2.6.10+4.12.20}\) (*)
= \(\dfrac{1.2.3\left(1+2^3+4^3\right)}{1.3.5\left(1+2^3+4^3\right)}\) = \(\dfrac{1.2.3}{1.3.5}\) = \(\dfrac{2}{5}\)
\(\dfrac{2016}{2017}-\left(\dfrac{2016}{2017}+\dfrac{11}{19}\right)\)
\(\dfrac{2016}{2017}-\left(\dfrac{2016}{2017}+\dfrac{11}{19}\right)=\dfrac{2016}{2017}-\dfrac{2016}{2017}-\dfrac{11}{19}=-\dfrac{11}{19}\)