A) x+1 là ước của 2x-2
B)-6 chia hết cho (2x+2)
C)(3x-1) chia hết (x+1)
Bài 1: Tìm x thộc Z, biết:
a) -12 là bội của x+3
b) 9-x là ước của -15
c) 4 chia hết cho (10-x)
d) 10 chia hết cho (2x+1)
e) (x+7) chia hết cho (x-6)
g) 3x+2 chia hết cho +4
a: \(\Leftrightarrow x+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
hay \(x\in\left\{-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15\right\}\)
tìm số tự nhiên x sao cho :
a) x+1 là ước của 6
b)2x+7 là bội của x+1
c)(3x+13)chia hết cho(x+2)
d)(5x+3)chia hết cho(3x+5)
trình bày cả cách làm nhé
a. x + 1 thuộc Ư (6) = { 1; 2 ; 3 ;6 }
=> x thuộc { 0 ; 1 ; 2; 5 }
b)2x+7 là bội của x+1
Ta có 2x + 7 = 2( x + 1 ) + 5
Vì 2( x + 1 ) chia hết cho x+1
=> 5 chia hết cho x +1
hay x+1 thuộc Ư(5) = {1;5}
=> x thuộc { 0 ;4 }
c,d tương tự b
tìm số nguyên x, biết
a. 11 chia hết cho x
b. x chia hết cho 18
c. 2x-3 là bội của x +1
d. x-2 là ước của 3x -2
Tìm x thuộc Z , biết :
a) 3x - 5 là bội của 2x - 1
b) x - 2 là ước của 7x - 6
c) x2 - 2x + 4 chia hết cho x - 1
Bài 1: Tìm số tự nhiên x sao cho :
a)x+22 chia hết cho x+2
b)2x-18 chia hết cho x-1
c)3x+5 chia hết cho 2x+1
Bài 2 : Tìm số tự nhiên nhỏ nhất có 9 ước,có 15 ước
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Tìm số tự nhiên x > 0 biết
a) 35 chia hết cho x
b) x-1 là ước của 6
c) 10 chia hết cho ( 2x+1)
d) x chia hết cho 25 và x < 100
e) x+13 chia hết cho x+1
f) 2x+108 chia hết cho 2x+3
a. x bằng 1,,5,7,35
b, x bằng 2, 4, 3 ,7
c, x bằng 2.
a, 27x^2+a chia hết cho (3x+2)
b, x^4+ax^2+1 chia hết cho x^2 +2x+1
c, 3x^2+ax+27 chia cho x+5 có số dư bằng 2
Bài 2: Tìm a, b sao cho:
a, x^4+ax^2+b chia hết cho x^2+x+1
b, ax^3+bx-24 chia hết cho (x-1)(x+3)
c, x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d, 2x^3+ax+b chia cho x+1 dư -6, chia cho x-2 dư 21.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
Nhanh lên, mình cần gấp!!!!
Bài 15: Tìm x thuộc Z sao cho:
a) 2x+6 chia hết cho x;
b) 3x+9 chia hết cho x + 2
c) 2x+1 chia hết cho x -1.
d) 2x+1 chia hết cho 3x-1.
b) \(3x+9=3x+6+3=3\left(x+2\right)+3⋮\left(x+2\right)\Leftrightarrow3⋮\left(x+2\right)\)
\(\Leftrightarrow x+2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow x\in\left\{-5,-3,-1,1\right\}\).
a), c) tương tự.
d) \(\left(2x+1\right)⋮\left(3x-1\right)\Rightarrow3\left(2x+1\right)=6x+3=6x-2+5=2\left(3x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\Leftrightarrow3x-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{0,2\right\}\)(vì \(x\)nguyên)
Thử lại đều thỏa mãn.