cho tam giac ABC vuong tai A, ve AH vuong goc voi BC(H thuoc BC). Cho BA=18, CH=32. Tinh AC
cho tam giac ABC vuong tai A , AB = 5 cm . Ve AH vuong goc voi BC ( H thuoc BC ) . Biet BH = 3cm , CH =8cm . Tinh do dai doan thang AC
tam giác ABH vuông tại H. Áp dụng định lí Pi-ta-go ta có:
AH2=AB2-BH2=52-32=16 => AH=4
Ta có: HC=BC-BH=8-3=5 =>HC=5
Tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:
AC2=AH2+HC2=42+52=41
tam giac ABC vuong tai A, ve AH vuong goc voi BC( H thuoc BC). tinh AH biet : AB:AC=3:4 va BC=10CM
Hình bạn tự vẽ nhé.
Vì tam giác ABC vuông tại A.
Suy ra AB2+AC2=BC2AB2+AC2=BC2
⇔AB2+AC2=100(1)⇔AB2+AC2=100(1)
Ta có ABAC=34(GT)(2)ABAC=34(GT)(2)
Từ (1) , (2) suy ra ⎧⎩⎨AB2+AC2=100ABAC=34⇒⎧⎩⎨⎪⎪⎪⎪⎪⎪(3AC4)2+AC2=100AB=3AC4⇒{AB=6AC=8{AB2+AC2=100ABAC=34⇒{(3AC4)2+AC2=100AB=3AC4⇒{AB=6AC=8
Ta có : Diện tích tam giác ABC được tính bởi công thức 12AH⋅BC12AH⋅BC
mà vì đây cũng là tam giác vuông, nên còn được tính bởi công thức 12AB⋅AC12AB⋅AC
=> AH⋅BC=AB⋅ACAH⋅BC=AB⋅AC (sau này sẽ học ở lớp 9 hệ thức này)
⇒AH=AB⋅ACBC=6⋅810=4,8(cm)
ban ve hinh ho minh
cho tam giac ABC can tai A . Ve BH vuong goc voi AC (H thuoc AC) ,CK vuong goc voi AB(K thuoc AB) a/chung minh rang AH=AK b/ goi i la giao diem cua BH va CK .chung minh ^KAI=^HAI c/duong thang AC cat BC tai P .chung minh AI vuong goc voi BC tai P
Cho tam giac ABC vuong tai A I la trung diem cua BC Ve Cx// AB ( Cx va AB thuoc 2 nua mt phang doi nhau bo BC ) Tren Cx lay diem M sao cho CM = AB Ve AH vuong goc voi BC tai H MK vuong goc voi BC tai K CM a) tam giac AIB = Tam giac MIC b) tam giác ABC = tam giác MCB c) AC//BM AC = BM d) CM vuông góc AC e) góc HAI = góc KMI
Cho tam giac ABC vuong o dinh A . Ve AH vuong goc BC (H thuoc BC ). Ve HE vuong goc voi AC, HF vuong goc voi AB (E thuoc AC,F thuoc AB).Tim trong hinh ve nhung cap gocnhon bang nhau, biet rang hai goc nhon co cap canh tuong ung vuong goc thi bang nhau
Hình:
Giải:
Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:
\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)
=> Có 8 góc nhọn
Ta có:
\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)
Suy ra tứ giác AFHE là hình chữ nhật
Từ đó, suy ra:
\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)
* Xét trường hợp FH // AE ( FH // AC), có:
- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)
- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)
* Xét trường hợp HE // AF ( HE // AB), có:
- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)
- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)
Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau
Vậy ...
cho tam giac ABC vuong tai A,B=50 do . Ke AH vuong goc BC(h thuoc BC). Ke HE vuong goc voi AC(E thuoc AC)
a) chung minh rang AB//HE
b)tinh so do cac goc AHE ; BAH
cho tam giac ABC vuong tai A .Tia phan giac cua B cat canh AC tai D .Tu D ve DE vuong goc voi BC(E thuoc Bc).Tia ED va tia BA cat nhau tai F.a.So sanh DA va DC;b.Chung minh BD vuong goc voi FC;c.Chung minh AE vuong goc voi FC
Cho tam giac ABC vuong o dinh A . Ve AH vuong goc BC (H thuoc BC ). Ve HE vuong goc voi AC, HF vuong goc voi AB (E thuoc AC,F thuoc AB).Tim trong hinh ve nhung cap gocnhon bang nhau, biet rang hai goc nhon co cap canh tuong ung vuong goc thi bang nhau
Cho tam giac ABC vuong o dinh A . Ve AH vuong goc BC (H thuoc BC ). Ve HE vuong goc voi AC, HF vuong goc voi AB (E thuoc AC,F thuoc AB).Tim trong hinh ve nhung cap gocnhon bang nhau, biet rang hai goc nhon co cap canh tuong ung vuong goc thi bang nhau