với số x không âm , tìm GTNN và GTLN của
B = \(\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\)
thank
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Cho x;y là số thực không âm; thỏa mãn : x3+y3 +xy =x2 +y2
Tìm GTLN;GTNN của \(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Câu 1: Tìm GTNN của a - \(\sqrt{a}\) + 1 với a không âm
Câu 2: Tìm GTLN của \(\sqrt{1+2a-a^2}\)
Câu 3: Tìm GTNN của x - 2\(\sqrt{x-1}\) với x lớn hơn hoặc bằng 1
Câu 1:
\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)
\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm
\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)
Câu 2:
\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)
Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định
\(\Rightarrow 2-(a-1)^2\leq 2\)
\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)
Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)
Câu 3:
ĐK: $x\geq 1$
\(x-2\sqrt{x-1}=(x-1)-2\sqrt{x-1}+1\)
\(=(\sqrt{x-1}-1)^2\geq 0, \forall x\geq 1\)
Vậy GTNN của biểu thức là $0$
Dấu "=" xảy ra khi \((\sqrt{x-1}-1)^2=0\Leftrightarrow x=2\)
Tìm GTNN GTLN của A= \(\frac{1}{\sqrt{x}-1}\) và B=\(\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
Tìm GTLN GTNN của \(A=\frac{1}{\sqrt{X}-1}\) và\(B=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
A: GTLN : 1
GTNN : 0
B: GTLN : 1
GTNN :0
1. cho x, y không âm thoả mãn X^2+ Y^2 = 1. tìm GTNN: A=\(\sqrt{4+5x}\) + \(\sqrt{4+5y}\)
2. với a, b không âm thoả mãn a^2 + b^2=4 . Tìm GTLN B= \(\frac{ab}{a+b+2}\)
\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)
\(\Rightarrow a+b-2\le\sqrt{8}-2\)
\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)
Do x ; y không âm , \(x^2+y^2=1\)
\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)
\(x,y\ge0\Rightarrow xy\ge0\)
Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)
\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)
\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)
\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)
\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
Giả sử x và y là những số không âm thay đổi thỏa mãn điều kiện x2+y2=1
a, chứng minh rằng \(1\le x+y\le\sqrt{2}\)
b, Tìm GTLN và GTNN của \(P = {\sqrt{1+2x}+\sqrt{1+2y}}\)
Tìm GTLN và GTNN của \(A=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\) với \(x\ge0\).
Đặt \(\sqrt{x}=a\ge0\)
\(\Rightarrow A=\frac{a^2+a+1}{a^2+2a+1}\)
\(\Leftrightarrow\left(A-1\right)a^2+\left(2A-1\right)a+A-1=0\)
Để PT theo nghiệm a có nghiệm thì
\(\Delta=\left(2A-1\right)^2-4\left(A-1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow4A-3\ge0\)
\(\Leftrightarrow A\ge\frac{3}{4}\)
Ta lại có: \(A=\frac{a^2+a+1}{a^2+2a+1}=1-\frac{a}{a^2+2a+1}\le1\)
Vậy ...
Cho x, y không âm và x+y ≤1. Tìm GTLN của \(A=\sqrt{1+4x^2}+\sqrt{1+4y^2}+3\sqrt{x}+3\sqrt{y}\)
Mọi người giúp em với, xin cảm ơn ạ.