cho 2 da thuc:
A(x)=2x^3+2x-3x^3+1
B(x)=2x^2+3x^3-x-5
cho hai da thuc A(x)=2x(x-2)-5(x+3)+7x^3 va B(x)=-x(x+5)-(2x-3)+x(3x^2-2x).a, thu gon A(x),B(x).b, tim nghiem cua da thuc P(x)=A(x)-B(x)-x^2(4x+5)
Cho 2 da thuc A= 2x^3 + x^2 - 4x +x^3 + 3 ; B= 6x + 3x^3 -2x + x^2 - 5
a, Tinh tong hai da thuc A+B
b, Tinh hieu hai da thuc A-B
c, tim nghiem cua da thuc hieu A - B vua tim duoc o y b.
a) \(A+B=2x^3+x^2-4x+x^3+3+6x+3x^3-2x+x^2-5\)
\(=6x^3+2x^2-2\)
b) \(A-B=\left(2x^3+x^2-4x+x^3+3\right)-\left(6x+3x^3-2x+x^2-5\right)\)
\(=-8x+8\)
c) Đặt \(f\left(x\right)=-8x+8\)
Ta có: \(f\left(x\right)=0\Leftrightarrow-8x+8=0\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)là nghiệm của đa thức f(x).
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
tim nghiem cua cac da thuc
a,x^2+x
b,x^2+2x+1
c,2x^2+3x-5
d,x^2-4x+3
e,x^2+6x+5
f,3x(12x-4)-9x(4x-3)=30
g,2x(x-1)+x(5-2x)=15
cho 2 da thuc :f(x)=3x^3 - 2x^2 + x + 5
g(x)=3x^2 + ax + b
tim a,b sao cho f(x)=(x-1)*g(x)
moi nguoi giai giup em voi
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.
Tim nghiem cua da thuc :
a,3x^2+5x+2
b,x(3-2x)x-(-2x^2+5x-4)
c,x^3+3x
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
P(x) = -3x2+4x-x3+x2+3x-1 Q(x)=3x4-x2+x3-2x-1-2x3 a) thu gon va sx giam dan b) M(x) =P(x)-Q(x) tim nghiem cua da thuc
a,
*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)
\(P(x)=-3x^2+7x-x^3-1\)
\(P(x)=-x^3-3x^2+7x-1\)
* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)
\(Q(x)=3x^4-x^2-x^3-2x-1\)
\(Q(x)=3x^4-x^3-x^2-1\)
b, \(M(x)=P(x)-Q(x)\)
\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)
\(M(x)=-2x^2+7x-3x^4\)