Phân tích biểu thức thành nhân tử
\(3x-7\sqrt{x}-20\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
phân tích đa thức thành nhân tử
\(x\sqrt{x}-5\)
\(x+7\sqrt{x}+10\)
\(x+7\sqrt{x}+10=\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)\)
Phân tích đa thức thành nhân tử
x^3+9x^2+27x+27
3\(\sqrt{3x^3}\)+18x^2+12\(\sqrt{3x}\)+8
\(\dfrac{1}{4}\)-x^2
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
phân tích đa thức thành nhân tử: (x^2-3x+2)(x^2-9x+20)-40
\(\left(x^2-3x+2\right)\left(x^2-9x+20\right)-40=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-40\)
\(=\left(x^2-6x+5\right)\left(x^2-6x+8\right)-40\)
Đặt \(t=x^2-6x+5\) thì ta có \(t\left(t+3\right)-40=t^2+3t-40=\left(t+8\right)\left(t-5\right)\)
Suy ra \(\left(x^2-6x+5\right)\left(x^2-6x+8\right)-40=\left(x^2-6x+13\right)\left(x^2-6x\right)=x\left(x-6\right)\left(x^2-6x+13\right)\)
( x+2)3x - 2x (7-x)
Phân tích đa thức thành nhân tử ạ
\(=3x^2+6x-14x+2x^2\\ =5x^2-8x=x\left(5x-8\right)\)
phân tích đa thức thành phân tử(đặt nhân tử chung)
3x(x+1)^2-5x^2(x+1)+7(x+1)
\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
Phân tích đa thức thành nhân tử \(x\sqrt{x}-3x+4\sqrt{x}-2\left(x>0\right)\)
phân tích đa thức thành nhân tử:
3x(x+20(3x^2+6x+2)+1
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)