rút gọn biểu thức A=(3x+3)/(x^3+^2+x+1)
a (x+3)^2 +x(2x+5y^2)
b (3x-2)^2 - (3x-1) (3x+1)
rút gọn biểu thức
\(a,=x^2+6x+9+2x^2+5xy^2=3x^2+6x+5xy^2+9\\ b,=9x^2-12x+4-9x^2+1=-12x+5\)
b: \(=9x^2-12x+4-9x^2+1=-12x+5\)
rút gọn biểu thức
a)x(x-2)(x+2)+(x+3)(x^2-3x+9)
b)(3x+2)^2-18x(3x+2)+(x-1)^3-28x^3+3x(x-1)
rút gọn biểu thức A=(x-2)^3+6(x+1)^2-(x^2+3x+9)*(x-3)
Rút gọn biểu thức a) (3x +1)² - x(9x -3) b)( x+2)(x² -2x +4) - x(x² -3)
a. 9x2 + 6x + 1 - 9x2 + 3x = 9x + 1
b. x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 3x = 3x + 8
a) rút gọn biểu thức
A = 5 ( x + 1 )2 - 3 ( x -3 )2 - 4 ( x + 2 ) ( x - 2 )
b) rút gọn các biểu thức sau và tính giá trị của biểu thức tại x = -7
B = ( 2x - 3 ) ( 3x + 5 ) - 2x ( x - 2 )2 - ( 2x - 3 ) ( 2x + 3 )
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
Cho biểu thức A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
và B=\(\dfrac{x^2+x-2}{x^3-1}\)
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=\(A^{-1}-B\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
cho biểu thức \(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
Rút gọn biểu thức A
\(A=\frac{\left[x\left(x^2-x+1\right)\right]-\left[\left(x+1\right)\left(3-3x\right)\right]+\left[x+4\right]}{x^3+1}\)
\(A=\frac{\left(x^3-x^2+x\right)+3\left(x^2-1\right)+\left(x+4\right)}{x^3+1}=\frac{x^3+2x^2+2x+1}{x^3+1}\)
\(A=\frac{\left(x^3+1\right)+2x\left(x+1\right)}{x^3+1}=1+\frac{2x}{x^2-x+1}\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x\left(x^2-x+1\right)-\left(3+3x\right)\left(x+1\right)+\left(x+4\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-9x-3-3x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2-3x^2+x-9x+x+3+4}{x^3+1}\)
\(A=\frac{x^3+2x^2-4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
C/m A>0
\(1+\frac{2x}{x^2-x+1}>0\)
x^2-x+1=(x-1/2)^2+3/4>3/4 ,moi x
neu x>=0 hien nhien A>1 tat nhien lon hon 0
xet x<0
can c/m !2x!<!x^2-x+1!
-2x<x^2-x+1
<=> x^2+x+1>0
<=> (x+1/2)^2+3/4>0 hien nhien dung
Rút gọn biểu thức
a) (x-3)(3x+2)-3x(x-5)+3
b) 2x(x-3)-(x-5)(2x-1)
c) (3x+2)(3x-2)+(4x-1)(x+2)-3
a) \(\left(x-3\right)\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.\left(3x+2\right)-3.\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.3x+x.2-3.3x-3.2-3x.x+3x.5+3\)
\(=3x^2+2x-9x-6-3x^2+15x+3\)
\(=8x-3\)
b )
\(2x\left(x-3\right)-\left(x-5\right)\left(2x-1\right)\)
\(2x.x-2x.3-x.\left(2x-1\right)-5.\left(2x-1\right)\)
\(2x.x-2x.3-x.2x+x.1-5.2x+5.x\)
\(2x^3-6x-2x^2+x-10x+5x\)
\(2x^3-15x-2x^2\)
muốn nhân đa thức với đa thức khỏi cần phải nhân từng đa thức với đơn thức .... Thì ta nhân luôn .... Lấy cả dấu mà nhân:
VD: \(\left(x-5\right)\left(2x-1\right)=x.2x+\left(-5\right).2x+x.\left(-1\right)+\left(-5\right)\left(-1\right)\)
Nhưng khi biết rồi thì nhẩm rồi viết ra kết quả cuối cho nhanh .... còn các câu hình như đồng dạng đó
Rút gọn rồi tính giá trị các biểu thức sau:
a. 4x(3x-2)-3x(4x+1) với x=-2
b. (x+3)(x-3)-(x-1)^2 với x=6
a. \(4x\left(3x-2\right)-3x\left(4x+1\right)\)
\(=12x^2-8x-12x^2-3x\)
\(=-11x\) \(\left(1\right)\)
Thay \(x=-2\) vào \(\left(1\right)\) ta được :
\(-11.\left(-2\right)=22\)
b. \(\left(x+3\right)\left(x-3\right)-\left(x-1\right)^2\)
\(=\left(x^2-9\right)-\left(x^2-2x+1\right)\)
\(=x^2-9-x^2+2x-1\)
\(=2x-10\) \(\left(2\right)\)
Thay \(x=6\) vào \(\left(2\right)\) ta được :
\(2.6-10=2\)
Cho biểu thức:
\(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\left(x\ne1\right)\)
a) Rút gọn biểu thức \(A\).
b) Tìm \(x\) dể biểu thức \(A\) có giá trị nguyên.
a: \(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\)
\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{x^4+2x^2+1-x^2}-\dfrac{x^2+3}{x^2\left(x-1\right)+3\left(x-1\right)}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x^2-x+1\right)}{\left(x^2+1\right)^2-x^2}-\dfrac{x^2+3}{\left(x-1\right)\left(x^2+3\right)}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{\left(x^2+1+x\right)\left(x^2+1-x\right)}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)
\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)
\(=\dfrac{2x^2+3+x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{1}\)
\(=\dfrac{x^2+1}{x^2+x+1}\)
b: Để A là số nguyên thì \(x^2+1⋮x^2+x+1\)
=>\(x^2+x+1-x⋮x^2+x+1\)
=>\(x⋮x^2+x+1\)
=>\(x^2+x⋮x^2+x+1\)
=>\(x^2+x+1-1⋮x^2+x+1\)
=>\(-1⋮x^2+x+1\)
=>\(x^2+x+1\in\left\{1;-1\right\}\)
=>\(x^2+x+1=1\)
=>x2+x=0
=>x(x+1)=0
=>\(x\in\left\{0;-1\right\}\)