Tìm các số tự nhiên x,y,z thỏa mãn x + 2y +3z = 4xyz - 5
tìm các số tự nhiên x,y,z sao cho x+2y+3z=4xyz-5
Tìm các số thực x,y,z thỏa mãn x/2=y/3,y/5=z/4 và x+2y+3z=76
Cho x,y,z là các số thực thỏa mãn:
-2≤x,y,z≤5 và x+2y+3z≤9. Tìm GTLN của bt:
M= x2 +2y2 +3z2
1)Tìm tất cả các cặp số nguyên x,y thỏa mãn : x2=y(y+1)(y+2)(y+3)
2)Cho các số nguyên x,y,z thỏa mãn S=x+2y+3z+2016 và P=(x+2015)5+(2y-2016)5+(3z+2017)5
Mk đang cần gấp . Mơn mấy thím trc
Tìm các số hữu tỉ x,y,z thỏa mãn: |x+2y-z| + (x-y+3z)^2 + (z-1)^4 = 0
Ta có: \(\hept{\begin{cases}|x+2y-z|\ge0;\forall x,y,z\\\left(x-y+3z\right)^2\ge0;\forall x,y,z\\\left(z-1\right)^4\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4\ge0;\forall x,y,z\)
Do đó \(|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+2y-z|=0\\\left(x-y+3z\right)^2=0\\\left(z-1\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y-z=0\\x-y+3z=0\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=1\\x-y=-3\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{4}{3}\\z=1\end{cases}}\)
Vậy ...
Tìm các số dương x,y,z thỏa mãn: \(\dfrac{3x-2y+z}{x}=\dfrac{3y-2z+x}{y}=\dfrac{3z-2x+y}{z}\)
Tìm các số không âm x,y,z thỏa mãn: x + 3z = 8, x + 2y = 9 và x + y + z lớn nhất.
Tìm x, y, z nguyên dương, thỏa mãn \(x+2y+3z=4xyz-5\)
Cho các số dương x;y;z thỏa mãn x +2y +3z 》 20
Tìm GTNN của biểu thức
A= x+y+z+3/z+9/2y+4/z